Что такое ситуационный план земельного участка для газификации и как его получить

План для газификации

При согласовании с эксплуатационными службами подключения участка к газовой сети составляется обязательный пакет документов, куда входит ситуационный план с привязкой к местным координатам, выполненный на листе формата А4. Сведения о возможности изготовления ситуационного плана для газификации предоставляются в органах местного муниципалитета.

Чтобы получить ситуационный план земельного участка по адресу, достаточно указать точные координаты местонахождения объекта.

При отсутствии такой информации необходимо обратиться в специализированную организацию, которая изготовит ситуационный план земельного участка в масштабе 1:2000 после выполнения топосъемки для газа.

Возможна также самостоятельная подготовка документа. За основу берутся карты в высоком разрешении с открытых источников. До этого необходимо предварительно уведомить эксплуатационные службы о проведении самостоятельного составления ситуационного плана земельного участка для газификации.

При составлении ситуационного плана для электросетей требуется указать:

Как бесплатно скачать ситуационный план земельного участка

Нередко случается, что с подготовкой документа заказчик старается справиться сам. Люди пытаются бесплатно скачать готовый ситуационный план земельного участка по кадастровому номеру онлайн и распечатать его. Но хочу вас предупредить, что государственных ресурсов в бесплатном доступе нет – планы масштабом 1:2000 и крупнее засекречены и получить их можно только при личном обращении в уполномоченный орган.

Возможные варианты выхода из положения:

  1. Использовать аэро-фото снимки ресурсов Яндекс или Гугл карт с самостоятельным нанесением границ необходимого участка. Нужной точности этим методом добиться сложно. Большинство организаций не принимают такие ситуационные планы, но их можно использовать, например, для коммерческих презентаций или собственных нужд;
  2. Также можно использовать сайт публичной кадастровой карты, но в основе плана будут опять аэро-фото снимки, которые не всегда можно использовать для подготовки плана;
  3. Самостоятельно разработать ситуационный план на компьютере используя специальные программы. Такой вариант практически не будет отличаться от плана, который готовят профессиональные геодезисты, но требует технических навыков. Предлагаю остановиться на нем подробнее.

Но нужно иметь в виду, что все источники карт в интернете (Яндекс, Google, 2GIS, РосРеестр) выдают растр исключительно в поперечной проекции меркатора, а кадастровая карта – это местные системы координат в проекции гаусса-крюгера с точным указанием центрального меридиана и смещений по северу-востоку. Поэтому, для небольших участков ситуационного плана, можно пойти на ручную привязку с поворотом снимка на малый угол без трансформации растра. Это даст некоторую погрешность, исправить которую можно будет по результатам геодезической съемки на местности.

Для газификации

СПЗУ является обязательным документов для газификации ЗУ. Основанием для получения плана является газификация участка. На схеме должны быть отображены линии прохождения газовых труб, источник газификации района застройки координаты развязки газовых труб- эта информация требует высокой точности при составлении плана.

Получить СПЗУ для газификации можно по следующей инструкции:

  1. Обратиться в отдел по землеустроительным работам в городской администрации.
  2. Составить заявление. В зависимости от местного регламента, оно подается либо на стандартном бланке, либо в свободной форме.
  3. К заявлению следует приложить:
    • выписку из плана межевания;
    • кадастровый паспорт участка;
    • свидетельство о форме права на на участок;
    • документацию на имеющиеся на ЗУ постройки.

Если на участке нет строений, нужно приложить справку об их отсутствии из Росреестра.

  • Специалисту отдела предъявляется паспорт собственника участка, подается и регистрируется заявление.
  • Если гражданину известен кадастровый номер ЗУ, он может получить СПЗУ в режиме онлайн, используя онлайн-сервис публичной кадастровой карты Росреестра. Данный способ абсолютно бесплатен.

    Как получить СП для газификации

    СП для газификации понадобится для проведения газоснабжения постройки. Его потребуют службы газификации. Способ получения не отличается от перечисленных выше. Путь получения отличается в зависимости от участка. Посетите газовую службу по месту нахождения земли. Они точно знают, где взять необходимый СП, но для этого потребуются точные координаты расположения владения. Если их нет, то придется обращаться к коммерческой организации.

    • его выдают органы местного самоуправления;
    • обязательно наличие энергопринимающих мощностей;
    • обязательно заверение СП геодезистом;
    • помимо участка с границами и всеми постройками, СП обязан отобразить все способы электрификации каждого объекта, возведенного на земле, с подробным указанием особенностей коммуникации, оборудования и материалов.

    Виды трансформаторов

    Трансформатором называется статическое электромагнитное устройство, содержащее от двух до нескольких обмоток, расположенных на общем магнитопроводе, и индуктивно связанных, таким образом, между собой. Служит трансформатор для преобразования электрической энергии переменного тока посредством электромагнитной индукции без изменения частоты тока. Используют трансформаторы как для преобразования переменного напряжения, так и для гальванической развязки в различных сферах электротехники и электроники.

    Справедливости ради отметим, что в некоторых случаях трансформатор может содержать и всего одну обмотку (автотрансформатор), а сердечник может и вовсе отсутствовать (ВЧ — трансформатор), однако в большинстве своем трансформаторы имеют сердечник (магнитопровод) из магнитомягкого ферромагнитного материала, и две или более изолированные ленточные или проволочные обмотки, охватываемые общим магнитным потоком, но обо всем по порядку. Рассмотрим, какие же бывают виды трансформаторов, как они устроены и для чего применяются.

    Данный вид низкочастотных (50-60 Гц) трансформаторов служит в электрических сетях, а также в установках приема и преобразования электрической энергии. Почему называется силовой? Потому что именно этот тип трансформаторов применяется для подачи и приема электроэнергии на ЛЭП и с ЛЭП, где напряжение может достигать 1150 кВ.

    В городских электросетях напряжение достигает 10 кВ. Посредством именно силовых низкочастотных трансформаторов напряжение также и понижается до 0,4 кВ, 380/220 вольт, необходимых потребителям.

    Конструктивно типичный силовой трансформатор может содержать две, три или более обмоток, расположенных на броневом сердечнике из электротехнической стали, причем некоторые из обмоток низшего напряжения могут питаться параллельно (трансформатор с расщепленными обмотками).

    Это удобно для повышения напряжения, получаемого одновременно с нескольких генераторов. Как правило, силовой трансформатор помещен в бак с трансформаторным маслом, а в случае особо мощных экземпляров добавляется система активного охлаждения.

    Трансформаторы силовые трехфазные мощностью до 4000 кВА устанавливаются на подстанциях и электростанциях. Более распространены трехфазные, поскольку потери получаются до 15% меньше, чем с тремя однофазными.

    Сетевые трансформаторы еще в 80-е и 90-е годы можно было встретить практически в любом электроприборе. С помощью именно сетевого трансформатора (обычно однофазного) напряжение бытовой сети 220 вольт с частотой 50 Гц понижается до уровня, требуемого электроприбору, например 5, 12, 24 или 48 вольт.

    Часто сетевые трансформаторы выполняются с несколькими вторичными обмотками, чтобы несколько источников напряжения можно было бы использовать для питания различных частей схемы. В частности, трансформаторы ТН (трансформатор накальный) всегда можно было (да и сейчас можно) встретить в схемах, где присутствовали радиолампы.

    Современные сетевые трансформаторы конструктивно выполняются на Ш-образных, стержневых или тороидальных сердечниках из набора пластин электротехнической стали, на которые и навиваются обмотки. Тороидальная форма магнитопровода позволяет получить более компактный трансформатор.

    Если сравнить трансформаторы равной габаритной мощности на тороидальном и на Ш-образном сердечниках, то тороидальный будет занимать меньше места, к тому же площадь поверхности тороидального магнитопровода полностью охватывается обмотками, нет пустого ярма, как в случае с броневым Ш-образным или стержневым сердечниками. К сетевым можно отнести в частности и сварочные трансформаторы мощностью до 6 кВт. Сетевые трансформаторы, конечно, относятся к низкочастотным трансформаторам.

    Одной из разновидностей низкочастотного трансформатора является автотрансформатор, у которого вторичная обмотка является частью первичной или первичная является частью вторичной. То есть в автотрансформаторе обмотки связаны не только магнитно, но и электрически. Несколько выводов делаются от единственной обмотки, и позволяют всего с одной обмотки получить различное напряжение.

    Главное преимущество автотрансформатора — меньшая стоимость, поскольку расходуется меньше провода для обмоток, меньше стали для сердечника, в итоге и вес получается меньше, чем у обычного трансформатора. Недостаток — отсутствие гальванической развязки обмоток.

    Автотрансформаторы находят применение в устройствах автоматического управления, а также широко используются в высоковольтных электросетях. Трехфазные автотрансформаторы с соединением обмоток в треугольник либо в звезду в электрических сетях весьма востребованы сегодня.

    Силовые автотрансформаторы выпускаются на мощности вплоть до сотен мегаватт. Применяют автотрансформаторы и для пуска мощных двигателей переменного тока. Автотрансформаторы особенно целесообразны при невысоких коэффициентах трансформации.

    Частным случаем автотрансформатора является лабораторный автотрансформатор (ЛАТР). Он позволяет плавно регулировать напряжение, подаваемое к потребителю. Конструкция ЛАТРа представляет собой тороидальный трансформатор с единственной обмоткой, которая имеет неизолированную «дорожку» от витка к витку, то есть имеется возможность подключения к каждому из витков обмотки. Контакт с дорожкой обеспечивается скользящей угольной щеткой, которая управляется поворотной ручкой.

    Так можно получить на нагрузке действующее напряжение различной величины. Типичные однофазные ЛАТРы позволяют получать напряжение от 0 до 250 вольт, а трехфазные — от 0 до 450 вольт. ЛАТРы мощностью от 0,5 до 10 кВт очень популярны в лабораториях для целей наладки электрооборудования.

    Трансформатором тока называется трансформатор, первичная обмотка которого подключается к источнику тока, а вторичная — к защитным или измерительным приборам, имеющим малые внутренние сопротивления. Наиболее распространенным типом трансформатора тока является измерительный трансформатор тока.

    Первичная обмотка трансформатора тока (обычно — всего один виток, один провод) включается последовательно в цепь, в которой требуется измерить переменный ток. Получается в результате, что ток вторичной обмотки пропорционален току первичной, при этом вторичная обмотка обязательно должна быть нагружена, ибо иначе напряжение вторичной обмотки может получиться достаточно высоким, чтобы пробить изоляцию. Кроме того, если вторичную обмотку ТТ разомкнуть, то магнитопровод просто выгорит от наведенных некомпенсированных токов.

    Конструкция трансформатора тока представляет собой сердечник из шихтованной кремнистой холоднокатаной электротехнической стали, на который намотана одна или несколько изолированных обмоток, являющихся вторичными. Первичная обмотка зачастую — просто шина, либо пропущенный через окно магнитопровода провод с измеряемым током (на этом принципе, кстати, работают токоизмерительные клещи). Главная характеристика трансформатора тока — коэффициент трансформации, например 100/5 А.

    Для измерения тока и в схемах релейной защиты трансформаторы тока применяются достаточно широко. Они безопасны, поскольку измеряемая и вторичная цепи гальванически изолированы друг от друга. Обычно промышленные трансформаторы тока выпускаются с двумя или более группами вторичных обмоток, одна из которых подключается к защитным устройствам, другая — к устройству измерения, например к счетчикам.

    Почти во всех современных сетевых блоках питания, в разнообразных инверторах, в сварочных аппаратах, и в прочих силовых и маломощных электрических преобразователях применяются импульсные трансформаторы. Сегодня импульсные схемы почти полностью вытеснили тяжелые низкочастотные трансформаторы с сердечниками из шихтованной стали.

    Типичный импульсный трансформатор представляет собой трансформатор выполненный на ферритовом сердечнике. Форма сердечника (магнитопровода) может быть совершенно различной: кольцо, стержень, чашка, Ш-образный, П-образный. Преимущество ферритов перед трансформаторной сталью очевидно – трансформаторы на феррите могут работать на частотах до 500 и более кГц.

    Поскольку импульсный трансформатор является высокочастотным трансформатором, то и габариты его с ростом частоты значительно снижаются. На обмотки требуется меньше провода, а для получения высокочастотного тока в первичной цепи достаточно полевого, IGBT или биполярного транзистора, иногда — нескольких, в зависимости от топологии импульсной схемы питания (прямоходовая – 1, двухтактная – 2, полумостовая – 2, мостовая — 4).

    Справедливости ради отметим, что если применяется обратноходовая схема питания, то трансформатор по сути является сдвоенным дросселем, поскольку процессы накопления и отдачи электроэнергии во вторичную цепь разделены во времени, то есть они протекают не одновременно, поэтому при обратноходовой схеме управления это все же дроссель, а не трансформатор.

    Импульсные схемы с трансформаторами и дросселями на феррите встречаются сегодня всюду, начиная от балластов энергосберегающих ламп и зарядных устройств различных гаджетов, заканчивая сварочными аппаратами и мощными инверторами.

    Импульсный трансформатор тока

    Для измерения величины и (или) направления тока в импульсных схемах часто применяют импульсные трансформаторы тока, представляющие собой ферритовый сердечник, зачастую — кольцевой (тороидальный), с единственной обмоткой. Через кольцо сердечника продевают провод, ток в котором нужно исследовать, а саму обмотку нагружают на резистор.

    Например, кольцо содержит 1000 витков провода, тогда соотношение токов первичной (продетый провод) и вторичной обмотки будет 1000 к 1. Если обмотка кольца нагружена на резистор известного номинала, то измеренное напряжение на нем будет пропорционально току обмотки, а значит измеряемый ток в 1000 раз больше тока через этот резистор.

    Промышленностью выпускаются импульсные трансформаторы тока с различными коэффициентами трансформации. Разработчику остается только подключить к такому трансформатору резистор и схему измерения. Если требуется узнать направление тока, а не его величину, то обмотка трансформатора тока нагружается просто двумя встречными стабилитронами.

    Связь между электрическими машинами и трансформаторами

    В курсы электрических машин, изучаемые на всех электротехнических специальностях учебных заведений, включают всегда и электрические трансформаторы. По существу, электрический трансформатор — не электрическая машина, а электрический аппарат, так как он не имеет движущихся частей, наличие которых является характерным признаком всякой машины как разновидности механизма. По этой причине упомянутые курсы следовало бы, во избежание недоразумений, называть «курсами электрических машин и электрических трансформаторов».

    Включение трансформаторов во все курсы электрических машин объясняется двумя причинами. Одна из них — исторического происхождения: те же заводы, которые строили электрические машины переменного тока, строили и трансформаторы, так как лишь наличие трансформаторов давало то преимущество машинам переменного тока над машинами постоянного тока, которое в конечном счете привело к их преобладанию в промышленности. И сейчас нельзя представить себе крупной установки переменного электрического тока без трансформаторов.

    Однако, по мере развития производства машин переменного тока и трансформаторов, сделалось необходимым сосредоточение производства трансформаторов на специальных трансформаторостроительных заводах. Дело в том, что, в связи с возможностью передачи электроэнергии переменного тока при помощи трансформаторов на большие расстояния, рост высшего напряжения трансформаторов шел значительно быстрее, чем рост напряжения электрических машин переменного тока.

    На нынешней стадии развития электрических машин переменного тока наивысшим рациональным напряжением для них является 36 кВ. В то же время высшее напряжение в реально осуществленных электрических трансформаторах достигло 1150 кВ. Столь высокие напряжения трансформаторов и работа их на воздушные линии электропередачи, подверженные воздействию грозовых разрядов, породили много специфических трансформаторных проблем, чуждых электрическим машинам.

    Это привело при производстве к технологическим проблемам, столь отличающимся от технологических проблем электромашиностроения, что выделение трансформаторов в самостоятельное производство стало неизбежным. Таким образом, первая причина — производственная связь, роднившая трансформаторы с электрическими машинами, исчезла.

    Вторая причина — принципиального характера, состоящая в том, что в основе применяемых на практике электрических трансформаторов, так же как и электрических машин, лежит принцип электромагнитной индукции (закон Фарадея), — остается незыблемой связью между ними. При этом, для понимания многих явлений в машинах переменного тока, знание физических процессов, протекающих в трансформаторах, совершенно необходимо и, кроме того, теория большого класса машин переменного тока может быть сведена к теории трансформаторов, благодаря чему облегчается их теоретическое рассмотрение.

    В силу этого, в теории машин переменного тока теория трансформаторов занимает прочное место, из чего, однако, не следует, что трансформаторы можно называть электрическими машинами. Кроме того, нужно иметь в виду, что у трансформаторов целевая установка и процесс преобразования энергии другие, чем у электрических машин.

    Цель электрической машины состоит в том, чтобы преобразовать механическую энергию в электрическую энергию (генератор) или, обратно, электрическую энергию в механическую энергию (двигатель), между тем, в трансформаторе мы имеем дело с преобразованием электрической энергии переменного тока одного вида в электрическую энергию переменного тока другого вида.

    Для измерения величины и (или) направления тока в импульсных схемах часто применяют импульсные трансформаторы тока, представляющие собой ферритовый сердечник, зачастую — кольцевой (тороидальный), с единственной обмоткой. Через кольцо сердечника продевают провод, ток в котором нужно исследовать, а саму обмотку нагружают на резистор.

    Как выбрать силовой трансформатор

    Выбор силового трансформатора для эксплуатации на предприятиях основан на подборе мощности, а также в соответствии с требованиями к надежности питания. Чтобы обеспечить бесперебойное питание, в некоторых случаях требуется установка нескольких трансформаторов. Мощность каждого устройства подбирается таким образом, чтобы при выходе его из строя, другие устройства были способны взять на себя функции этого недостающего звена, с учетом возможных перегрузок.

    Еще один важный критерий – наличие защиты:

    От внутренних повреждений. Обеспечивается устройствами, контролирующими наличие газов, температуру, давление и уровень масляного охладителя;

    От перегрузок. Используется так называемая дифференциальная защита, когда на каждой фазе установлены трансформаторы тока.

    Еще один важный критерий – наличие защиты:

    Чаще всего основные свойства устройства указаны в инструкции в его комплекте. Для силовых трансформаторов такими основными свойствами являются:
    • Номинальное значение напряжения и мощности.
    • Наибольший ток обмоток.
    • Габаритные размеры.
    • Вес устройства.

    Мощность трансформатора по номиналу определяется изготовителем, и выражается в кВА (киловольт-амперы). Номинальное значение напряжения указывается первичное, для соответствующей обмотки, и вторичное, на клеммах выхода. Размеры этих значений могут не совпадать на 5% в ту или иную сторону. Чтобы ее вычислить, нужно сделать простой расчет.

    Номинальный ток и мощность устройства должны удовлетворять стандартам. На сегодняшний день производятся модели сухих трансформаторов, которые имеют такие данные мощности от 160 до 630 кВА. Обычно мощность трансформатора обозначена в его паспорте. По ее значению определяют номинальный размер тока. Для расчета применяют формулу:

    I = S х √3U, где S и U – это мощность по номиналу, и напряжение.

    Для каждой обмотки в формулу входят свои значения величин. Чтобы рассчитать мощность силового трансформатора при работе с потребляющей энергию нагрузкой, необходимо проводить довольно сложные расчеты, которые могут сделать специалисты. Такие расчеты необходимы во избежание негативных моментов, которые могут возникнуть при функционировании трансформатора.

    Номинальное напряжение – это линейная величина напряжения холостого хода на обмотках. Они вычисляются, исходя из мощности трансформатора.

    Перед монтажом трансформатор подвергают лабораторным испытаниям, в ходе которых измеряется коэффициент трансформации, проверяется качество всех соединений, проверяется изоляция повышенным напряжением, производится контроль качества масла.

    Принятые классификации

    Учитывая немалый вес и размеры СТ, чтобы упростить ряд работ, связанных с обслуживанием, транспортировкой и планированием, данные устройства принято делить на габаритные группы. Ниже представлена таблица, где показано соответствие.

    Таблица габаритов СТ:

    Помимо габаритного распределения, СТ также классифицируют по следующим показателям:

    • число фаз (как правило, подстанции оборудованы трехфазными преобразователями);
    • количество обмоток (две или три);
    • функциональное назначение (понижение или повышение амплитуды);
    • исполнение (установка внутри помещения или снаружи);
    • система отвода тепла (воздушная или масляная).


    Несмотря на разнообразие видов СТ их конструкция неизменно включает следующие обязательные элементы:

    Трансформаторы напряжения

    Отличительная особенность этих конструкций заключается в том, что они работают в режиме, близком к состоянию холостого хода, когда величина их выходной нагрузки невысокая. Они подключается к той системе напряжений, величина которой будет измеряться.


    Из них создают целые комплексы систем измерения, позволяющие фильтровать и выделять различные составляющие векторов напряжения, учет которых необходим для точной работы защит, блокировок, систем сигнализации.

    Вводы силовых трансформаторов

    Питающее напряжение и нагрузка на трансформатор осуществляются через специальные устройства – силовые вводы.

    В зависимости от типа изделия они могут находиться снаружи изделия или внутри в виде клеммных колодок (для сухих трансформаторов). У трансформаторов масляного типа вводы располагаются исключительно снаружи (на крышке корпуса или сбоку). Обязательным условием является изоляция вводов из специальных материалов.

    По конструкции исполнения существует несколько разновидностей вводов с различным типом изоляции:

    • фарфоровая;
    • маслобарьерная;
    • полимерная;
    • элегазовая;
    • бумажно-масляная;
    • конденсаторная проходная.

    В зависимости от типа изделия они могут находиться снаружи изделия или внутри в виде клеммных колодок (для сухих трансформаторов). У трансформаторов масляного типа вводы располагаются исключительно снаружи (на крышке корпуса или сбоку). Обязательным условием является изоляция вводов из специальных материалов.

    Навесное оборудование

    Газовое реле располагается в соединительной трубке между расширительным и рабочим баками. Прибор предупреждает разложение изолирующей органики, масла при перегреве и небольшие повреждения системы. Устройство реагирует на газообразование при неполадках, подает тревожный сигнал или полностью отключает систему в случае короткого замыкания или опасного понижения уровня жидкости.

    Вверху бака в карманах ставят термопары для измерения температуры. Они работают по принципу математического расчета для выявления наиболее разогретой части агрегата. Современные датчики создаются на основе технологии оптоволокна.

    Узел беспрерывной регенерации используется для восстановления и очистки масла. В результате работы в массе образуется шлак, в нее попадает воздух. Устройства регенерации бывают двух типов:

    • термосифонные модули, использующие естественное перемещение нагретых слоев вверх и прохождение через фильтр, последующее опускание охлажденных потоков на дно бака;
    • адсорбционные установки качества принудительно перекачивают массу через фильтры насосом, располагаются отдельно на фундаменте, используются в схемах преобразователей больших габаритов.

    Модули для защиты масла представляют собой расширительный бак открытого типа. Воздух над поверхностью массы пропускается через поглотители влаги с силикагелем. Адсорбирующее вещество при максимальной влажности становится розовым, что служит сигналом к его замене.

    Вверху расширителя устанавливают масляный затвор. Это прибор для снижения влажности воздуха, работающий на трансформаторном сухом масле. Модуль с помощью патрубка соединяется с расширительным баком. Вверху приваривается емкость с внутренним разделением в виде нескольких стенок по форме лабиринта. Воздух пропускается через масло, отдает влагу, затем очищается силикагелем и поступает в расширитель.

    Узел беспрерывной регенерации используется для восстановления и очистки масла. В результате работы в массе образуется шлак, в нее попадает воздух. Устройства регенерации бывают двух типов:

    Разновидности

    Производство конструкций силовых трансформаторов предполагает применение различных технологий. В процессе создания представленной аппаратуры применяются разные диэлектрические компоненты. Определенные части оборудования способствуют охлаждению и обеспечивают электрическую защиту.

    Для маломощных разновидностей применяется диэлектрический компаунд или специальная бумага, электротехническое лаковое покрытие. Средние и мощные агрегаты имеют в своем составе такие основные части, как масло, элегаз. Производство подобного оборудования предполагает выполнять особую изоляцию обмоток.

    Помимо вышеприведенной классификации выделяют еще несколько основных категорий объектов:

    • Количество фаз. Бывает трёхфазный и однофазный тип приборов.
    • Тип исполнения. Применяются масляные, сухие и приборы с жидким диэлектрическим веществом.
    • Климатическое исполнение. Наружные и внутренние установки.
    • Число обмоток. Встречаются конструкции с двумя и более катушками.
    • Предназначение. Для понижения или повышения напряжения.
    • Возможность регулировки напряжения. Применяются аппараты с регулировкой и без нее.

    Производство подобной аппаратуры позволяет создавать установки мощностью от 4 кВА до 200 тыс. кВА (и выше). При этом достигается уровень напряжения на обмотках более 330 кВ.

    Всего существует девять групп оборудования. В первую из них входят приборы с напряжением не выше 35 кВ и мощностью 4-100 кВА. К восьмой отнесены аппараты с мощностью выше 200 тыс. кВА и напряжением 35-330 кВ. Существуют и более мощное оборудование. Оно относится к девятой категории.

    Устройство и монтаж силовых трансформаторов предполагает размещение станции на стационарной, специально подготовленной площадке. Фундамент сооружения должен быть прочным. На грунте при этом могут монтироваться катки и рельсы.

    Силовой трансформатор: классификация, особенности, производители

    Силовой трансформатор – специализированный электромагнитный статический преобразователь электрической энергии, который преобразует переменное напряжение одной величины в переменное напряжение другой величины посредством электромагнитных явлений, что обеспечивает гальваническую развязку между электрическими цепями различных сетей. Основными сферами, где используют электроустановки этого типа, являются:

    • Распределительные электросетевые компании;
    • Предприятия по генерации электроэнергии: АЭС, ТЭС, ГЭС, ТЭЦ;
    • Предприятия по добыче нефти, газа и других полезных ископаемых;
    • Объекты железнодорожной инфраструктуры;
    • Предприятия жилищно-коммунального хозяйства, социальной сферы, городской инфраструктуры;
    • Промышленные предприятия, фабрики, комбинаты и заводы.

    Все силовые трансформаторы подразделяют на большое количество различных типов и модификаций в зависимости от их конструктивных особенностей:

    1. Количество обмоток: двухобмоточные, трехобмоточные, многообмоточные;
    2. Количество фаз: однофазные и трехфазные;
    3. Схема соединения обмоток: треугольник, звезда, зигзаг;
    4. Группа соединения обмоток;
    5. Основное назначение: повышающие и понижающие;
    6. Тип основной изоляции обмоток: масляные и сухие;
    7. Климатическое исполнение: для эксплуатации снаружи или внутри помещений;
    8. Возможность регулирования выходного напряжения: нерегулируемые, регулируемые (РПН и ПБВ);
    9. Материал для изготовления обмоток: медь или алюминий;
    10. Конструкция магнитопровода: стержневой или броневой;
    11. Тип системы охлаждения: естественное или принудительное;
    12. Габаритные размеры.

    Конструкция силовых трансформаторов включает большое количество различных элементов, которые подразделяют на две группы: основные и вспомогательные. К группе основных конструктивных элементов трансформатора относят:

    • Магнитопровод. Предназначен для прохождения магнитного потока, который возбуждается в обмотках. Его изготавливают из электротехнической шихтованной стали или аморфных материалов. Конструктивно состоит из стержней, на которые одевают обмотки и ярма, предназначенного для объединения всех элементов в одну систему;
    • Обмотки. Представляют собой совокупность витков проводника, которые образуют общую электрическую цепь. Обмотка предназначена для наведения ЭДС, которые суммируются и формируют электромагнитный поток. Обмотки силовых трансформаторов различают по материалу изготовления, взаимному расположению на стержне магнитопровода, способу и направлению намотки, числу витков, схеме соединения обмоток между собой, классом напряжения;
    • Корпус. Предназначен для крепления и размещения всех основных и вспомогательных конструктивных элементов. Корпус изготавливают из прочной стали с обязательной защитой от коррозии. В целях безопасности обслуживающего персонала корпус силового трансформатора подлежит заземлению;
    • Высоковольтные вводы. Представляют собой изоляционную конструкцию, которая обеспечивает подключение обмоток трансформатора к электрической сети, путем безопасного прохождения через заземленный металлический корпус. Конструкция и вид высоковольтного ввода зависит от класса напряжения сети, номинального тока, климатических условий эксплуатации трансформатора;
    • Расширитель. Специальный сосуд, который соединяют с баком масляного силового трансформатора с целью компенсации изменений объема трансформаторного масла при изменении его температуры. Второй важной функцией расширителя является сокращение площади контакта трансформаторного масла с воздухом, что обеспечивает защиту от окисления, увлажнения и преждевременного старения;
    • Изоляция. Обеспечивает изоляцию токоведущих частей от заземленных частей трансформатора, а также между разноименными обмотками. В зависимости от типа трансформатора изоляцией может выступать трансформаторное масло или твердый компаунд;
    • Устройство регулирования выходного напряжения.Предназначено для изменения величины выходного напряжения силового трансформатора. В зависимости от конструкции выполняется в двух разных вариантах: РПН (регулирование под напряжением) и ПБВ (переключение без возбуждения);
    • Система охлаждения. Обеспечивает продолжительную безаварийную работу силового трансформатора в заданном температурном режиме. Для маломощных трансформаторов выполняется в виде естественного охлаждения окружающим воздухом. У трансформаторов большой мощности осуществляется принудительно при помощи циркуляции воздуха, масла или воды.

    Группа вспомогательных конструктивных компонентов силового трансформатора включает:

    • Газовое реле. Представляет собой устройство, которое чувствительно к концентрации газа, выделяемого при разложении трансформаторного масла внутри бака силового трансформатора. В зависимости от настроек, газовое реле подает предупреждающий сигнал или отключает питание силового трансформатора;
    • Индикаторы температуры. Специальные датчики, построенные на принципе термопары, которые постоянно измеряют температуру верхних слоев изоляции в силовом трансформаторе;
    • Поглотители влаги. Являются обязательным компонентом для силовых масляных трансформаторов. Они обеспечивают устранение влаги из воздуха, который поступает внутрь силового трансформатора и контактирует с трансформаторным маслом;
    • Индикатор уровня масла. Устройство, которое обеспечивает контроль за уровнем трансформаторного масла внутри бака. При критическом снижении уровня масла устройство подает предупредительный сигнал или отключает трансформатор от питающей сети;
    • Система регенерации масла (термосифонный фильтр). Представляет собой эффективный способ очистки трансформаторного масла без снятия нагрузки с электроустановки. В качестве фильтрующих материалов применяют крупнозернистый адсорбент (силикагель). Циркуляция масла через термосифонный фильтр осуществляется за счет разности температуры и соответственно плотности в нижней и верхней части трансформатора.

    В соответствии с требованиями международных стандартов, маркировка силового трансформатора осуществляется следующим образом:

    Буквенная часть обозначения типа:

    Э – электропечной.
    Л – линейный.
    А – автотрансформатор.
    отсутствие обозначения – трансформатор.

    Число фаз:

    О – однофазный.
    Т – трехфазный.

    Вид системы охлаждения:

    • Масляные трансформаторы: М, МВ, Д, МЦ, НМЦ, ДЦ, НДЦ, Ц, НЦ.
    • Сухие трансформаторы: С, СГ, СД, СЗ.

    Наиболее известными производителями силовых трансформаторов на территории Российской Федерации и стран СНГ являются:

    1. Кентауский трансформаторный завод, г. Кентау, Республика Казахстан;
    2. Тольяттинский трансформатор г. Тольятти;
    3. Самара Электрощит г. Самара;
    4. Минский электротехнический завод г. Минск, Республика Беларусь;
    5. ГК «СВЭЛ» г. Екатеринбург;
    6. Уральский трансформаторный завод г. Уральск, Республика Казахстан.

    Вид системы охлаждения:

    Почему трансформатор называют силовым

    Как мы уже сказали, силовые трансформаторы используют для понижения высоковольного тока до приемлемых для города параметров, то есть 220/360 В – в зависимости от местности и прочих условий. Но нужно отметить, что напряжение высоковольтных линий ненамного больше 1000 к В, а это больше миллиона вольт. Именно за трансформацию столь сильного напряжения, устройство и назвали таким красивым именем.


    Установленный силовой трансформатор

    Именно силовые трансформаторы используются для преобразования электричества городских и квартальных сетей. Получается многоступенчатая система снабжения страны электроэнергией:

    1. Сначала повышающие трансформаторы увеличивают напряжение до огромных значений
    2. По проводам ток течет в города и села
    3. Понижающие трансформаторы понижают напряжение сначала до общегородских, а потом и до квартальных значений.

    Отдельно нужно сказать, что иногда приходится понижать значение напряжения до 360 В в городе, потому что высоковольтные линии проводить в городской черте запрещено.


    Уже были названы повышающие и понижающие трансформаторы. В зависимости от места использования можно выделить сетевые и силовые аппараты. Сетевые трансформаторы используются в устройствах, поскольку даже квартальные параметры тока слишком высоки для простого телевизора или ноутбука. Поэтому используется трансформатор, чтобы преобразовать ток в подходящий для конкретного предмета бытовой техники.

    Что такое трансформатор?

    Начиная с 19 века, трансформаторы начали приобретать все большее значение в электрике и электронике. Они остаются до сих пор обязательными элементами многих схем и есть практически в любом устройстве, которое потребляет электрический ток.

    Принцип его работы основан на свойствах индукции. Трансформатор – это прибор, позволяющий регулировать ток, понижая его или наоборот, понижая. Был придуман он Фарадеем, почти 170 лет назад. Основные элементы, из которых состоит трансформатор – обмотки, которые и влияют на силу тока, тем самым изменяя его до требуемых значений.

    В данной стать разобраны основные вопросы работы и устройства трансформатора. Также статье есть видеоролик и скачиваемый файл по выбранной тематике.


    Отношение числа витков первичной и вторичной обмоток определяет коэффициент трансформации:
    k = w1 / w2; где:

    Читайте также:  Существующие комоды в черном цвете, советы по выбору
    Ссылка на основную публикацию