Что тяжелее песок или щебень?

Зависимость массы от характеристик

На вес 1 м 3 щебня влияет множество факторов. Он зависит от:

  • коэффициента водопоглощения;
  • исходного сырья;
  • фракции и формы материала;
  • наличия примесей;
  • условий хранения.

Точно определить насыпную плотность щебенки практически невозможно. Между зернами всегда есть воздушные промежутки. Чем больше свободного места, тем легче кубический метр продукта. Способность материала поглощать влагу накладывает свой отпечаток. Погрешность расчетов, вызванная водопоглощением, может достигать 10%.

Уплотнение зерен во многом определяется и их формой. От лещадности (содержания в общем объеме камней пластинчатой и продолговатой формы) зависит не только масса кубометра, но и характеристики, а также и себестоимость готовых изделий.

Важно понимать, что при производстве бетона использование фракции зерен, имеющих кубовидную форму, помогает более экономно расходовать заполнитель и повысить прочность продукта.

Важно понимать, что при производстве бетона использование фракции зерен, имеющих кубовидную форму, помогает более экономно расходовать заполнитель и повысить прочность продукта.

Фракции

В процессе покупки особое внимание нужно обращать на фракции гравия. Они определяются как по величине гранул, так и по плотности. Зерна могут иметь размер от 5 вплоть до 70 мм.

Основные фракции гравия (мм):

  1. 5(3)-10;
  2. 10-15;
  3. 10-20;
  4. 15-20;
  5. 20-40;
  6. 40-80(70);
  7. комбинация фракций 5(3)-20.

Гравий величиной 3-10 мм применяется при обустройстве игровых и спортивных площадок, частных пляжей, для фильтрации колодцев или родников, во флористике. Гравий 10-20 мм в величину используют для получения легкого бетона. В 1 м3 бетона примерно 1 т гравия в виде наполнителя.

Большие фракции порядка 20-40 мм идут на строительство трасс, мостов, покрытий аэродромов и т. д. Гравий величиной 40-70 мм и выше применяют преимущественно как декоративный материал. Им отделывают аквариумы, бассейны, клетки для животных, мостят улицы, применяют при постройке плотин.

Благодаря своей универсальности, сочетающейся с удобством использования и невысокой стоимостью, гравий получил широкое применение в сфере строительства .

  • плотность материала может колебаться в зависимости от его типа. Усредненный показатель плотности гравия — 2,6-2,7 т/м3. Насыпная плотность может иметь значение от 1,43 до 1,61 т/м3;
  • объемный вес равен 1600 кг/м3, а удельный – 1400 кг/м3;
  • форма зерен может быть округлой, округло-угловатой, угловатой. Согласно ГОСТу 8267-93, в составе гравия может быть не больше 35% (от массы) зерен, имеющих игловатую или пластинчатую форму;
  • прочность материала выражается в марках по дробимости при раздавливании (или сжатии) в цилиндре. Существуют такие марки по прочности: ДР8, ДР12, ДР16, ДР24. Предел прочности на сжатие равен 1,5 т/см2;
  • для гравия, который используется в строительстве дорог, дополнительно устанавливают меру истираемости, которая определяется в результате испытаний в полочном барабане. При этом выделяют марки И-I, И-II, И-III и И-IV;
  • исходя из степени морозостойкости, выделяют марки гравия от F15 до F400.

Галька

Научное название гальки – галтованный камень. Она представляет собой совокупность самых разных природных минералов и горных пород (чаще всего это кварц, доломит или гранит), отшлифованные до маленьких гладких камешков при содействии естественных помощников – воды и ветра. Особенность гальки в том, что многообразием цветовой гаммы, формы и прочности она обязана только природе, человек практически не влияет на процесс ее создания и формирования.

Между различными видами гальки, в зависимости от того, в какой воде происходит многовековой процесс ее образования, существует несколько различий, часто – существенных. При обработке морской водой галька становиться более гладкой, иногда даже зеркальной, из-за постоянных отливов и приливов, а также высокого содержания соли, действующих в совокупности как абразивный камень. Благодаря своей прочности, самыми ценными галечными камнями считаются черноморский и адыгейский.

Гальку применяют для возведения фундамента, строительства взлетно-посадочных полос и автомобильных дорог, используя ее в качестве «подушки» под эти объекты, так как из-за небольших размеров и высокой прочности, она выдерживает очень сильные нагрузки. Также галька считается лучшим материалом при прокладке дренажных систем и для засыпки подъездных путей к начинающемуся строительству.

Но больше всего распространение галька получила как материал для декора, так как это красивое, экологически безопасное и, благодаря многообразию цветов и форм, оригинальное украшение для интерьера и ландшафта: фонтанов, садов, парков, искусственных водоемов и клумб. Галькой декорируются не только фасады и цоколи зданий. Она используется и для внутренней отделки помещений (например, ванной комнаты, даже фартука для кухни).

Стоит помнить, что щебень, который подходит для одних строительных работ, совершенно непригоден для других. В зависимости от того, из какой породы был произведен щебень, различаются следующие виды:

Характеристика материала

Разного рода песок может иметь разные как физические, так и химические характеристики в зависимости от состава, который может быть:

  • химическим;
  • минеральным;
  • гранулометрическим (отображение состава частиц в процентах зависимо от фракции).

Важным показателем выступает фактический вес одного метра кубического песка. Он колеблется в пределах 1,5-1,8 тонн. Меньший вес считается лучше, поскольку масса примесей минимальна.

Влажность играет далеко не последнюю роль. В норме она должна быть 5%. От этого показателя зависит количество воды, добавляемой в бетонный раствор. Во время домашнего строительства можно проверить влажность материала «на глаз»: если после сжатия в кулаке песок не рассыпается – значит, нормальный уровень влажности превышен, и смесь будет нуждаться в меньшем количестве воды.


Важным показателем выступает фактический вес одного метра кубического песка. Он колеблется в пределах 1,5-1,8 тонн. Меньший вес считается лучше, поскольку масса примесей минимальна.

Устройство и принцип работы

Современные модули представляет собой конструкцию, состоящую из двух пластин-изоляторов (как правило, керамических), с расположенными между ними последовательно соединенными термопарами. С упрощенной схемой такого элемента можно ознакомиться на представленном ниже рисунке.

Устройство модульного элемента Пельтье

Обозначения:

  • А – контакты для подключения к источнику питания;
  • B – горячая поверхность элемента;
  • С – холодная сторона;
  • D – медные проводники;
  • E – полупроводник на основе р-перехода;
  • F – полупроводник n-типа.

Конструкция выполнена таким образом, что каждая из сторон модуля контактирует либо p-n, либо n-p переходами (в зависимости от полярности). Контакты p-n нагреваются, n-p – охлаждаются (см. рис.3). Соответственно, возникает разность температур (DT) на сторонах элемента. Для наблюдателя этот эффект будет выглядеть, как перенос тепловой энергии между сторонами модуля. Примечательно, что изменение полярности питания приводит к смене горячей и холодной поверхности.

Рис. 3. А – горячая сторона термоэлемента, В – холодная


Обозначения:

Мощный генератор на 12 модулях Пельтье

Лучшее время для работы термогенератора на основе элементов пельтье, это конечно же зима. Потому что их нужно хорошо охлаждать, чтобы хоть что-то получить.

В эксперименте с испытанием мощного генератора использованы 12 модулей Пельтье TEC1-12706. Самые дешевые и популярные, продаются в этом китайском магазине. Для него есть кулер охлаждения.

Охлаждение в показанном примере осуществлялось вентилятором мощностью 5,4 ватта, 12 вольт.

О том, что это такое элемент Пельтье, какие у него характеристики и как работает, конструкции рабочих моделей, описано в нескольких статьях на нашем сайте, которые вы легко сможете найти через строку удобного поиска.

Цель эксперимента узнать, какую максимальную мощность может выдать обычный китайский самый дешевый термоэлемент в зимнее время года.
Итак, с началом эксперимента печь растоплена, когда дрова немного разгорелись, термогенератор начал работать и запустился вентилятор. Он охлаждает холодную сторону термоэлементов. Схема простейшая. В конце видео показано, как собирается такой термогенератор.


В ходе эксперимента будет достигнуто максимальное напряжение холостого хода этого генератора. Потом при помощи потенциометра это напряжение будет понижено ровно вполовину. Тем самым уровняется сопротивление генератора и сопротивление нагрузки. Тогда в генераторе и в нагрузке рассеивается одна и та же величина мощности. Это даст 50 процентную мощность, точнее кпд 50% отдаваемой мощности. Это соответствует эффективности всего лишь 50%. Но зато выход такой мощности будет максимальным в таком соотношении. Но передача максимальной мощности имеет место только при таком соотношении!
По мере разогрева печи растет напряжение, выдаваемое электрогенератором. Вентилятор набрал обороты, это довольно мощный вентилятор мощностью 5,5 ватт. Поэтому часть мощности он будет отбирать на себя. Та мощность, которую сейчас будет определена, это будет полезная мощность. Больше 26 вольт напряжение не поднимается. Подключаем потенциометр и начинаем добавлять сопротивление.

Из 12 элементов пельтье получается 0,5 ватт и более на один элемент. При температуре воздуха ноль градусов это неплохой показатель на воздушном охлаждении. При температуре -20 результат был бы на порядок выше. Поэтому вполне возможно получить даже до одного ватта на один элемент пельтье, но при большом морозе.
Теперь вентилятор будет подключен через ваттметр для того, чтобы посмотреть, сколько полезной энергии расходуется на его работу. Прибор показал 6 ватт. Если бы не этот вентилятор, можно было бы добавить еще 5-6 ватт к мощности этого термогенератора.
В продолжение эксперимента вентилятор планировалось отключить, чтобы охлаждение делать с помощью снега. После того, как вентилятор сброшен, радиатор будет обильно покрыт снегом. Однако, в эксперименте произошла неожиданная авария. После того, как был снят вентилятор, печка перегрелась и вышел из строя какой-то из элементов пельтье, расплавившись без охлаждения. В системе произошло разъединение контактов. Поэтому вентилятор является в данном устройстве полезным элементом. Для безопасности же необходимо использовать защитные решетки.

Вывод следующий: порядка 1 ватта на элемент пельтье можно получить при хорошем морозе. Есть места, например якутия или дальний север, температура доходит до минус 50 градусов цельсия. Так что там 1 ватт с элемента получить будет просто. Представьте, в юрте печка, а за ней стена размером 1 x 2 м. Теплый стороной внутрь печки, а холодный наружу, где мороз и ветер. С одного квадратного метра таких элементов можно снять до 0,5 киловатта электричества. То есть, с 2 квадратных метров можно получить до одного киловатта электроэнергии.

Такие мощные печи на основе элементов Пельтье производятся в России. Называются они “Электрогенерирующая печь Индигирка”. Купить их можно в этом магазине, скидочный промокод 11920924.

Конструкция такого термогенератора предельно проста. 12 самых дешевых китайских элементах пельтье зажимаются между двумя алюминиевыми радиаторами, которые должны иметь ровные, в идеале полированные, поверхности. Естественно, на каждую сторону термоэлемента наносится термопаста. Скручиваем радиаторы болтами и соединяем проводами. Крепим кулер, желательно мощнее. Ну и сама печка. Это кусок оцинковки, лучше нержавейки. Крепится к горячему радиатору болтами. Потом делается дно с отверстиями 7-8 миллиметров для забора воздуха.

Есть продолжение этого эксперимента. Чтобы найти его, напишите в поиске по сайту: Пельтье на воздушном охлаждении.


Цель эксперимента узнать, какую максимальную мощность может выдать обычный китайский самый дешевый термоэлемент в зимнее время года.
Итак, с началом эксперимента печь растоплена, когда дрова немного разгорелись, термогенератор начал работать и запустился вентилятор. Он охлаждает холодную сторону термоэлементов. Схема простейшая. В конце видео показано, как собирается такой термогенератор.

В гостях у Самоделкина

Щелкунчик-орехокол для грецких и кокосовых орехов

Термоэлектрический генератор(ТЭГ) на модулях Пельтье

Приветствую всех читателей. В предыдущей теме:Автономная солнечная система в Подмосковье я упомянул про свой ТЭГ, который помогает при отсутствии солнца. В комментариях люди просили на этом остановиться подробнее. Вот, вспомнил, что да как. И отвечаю. Сперва идут мои материалы с Форумхауса многолетней давности. Не все, а для понимания.

Итак, год назад, перед ноябрьским отключением электричества, я сваял примитивный термоэлектрический агрегат из одного модуля Пельтье из Вольтмастера, самый дешёвый на 127 ватт холода. Особенности таких модулей – эффективность в генерации 2-3%, максимальная температура нагрева – 150 градусов Цельсия. Из разнообразных обрезков(см. фото)

алюминия склеил/скрутил вокруг модуля два радиатора – один(нижний) на печку для уменьшения температуры, поступающей к модулю, второй – сверху для быстрейшего охлаждения холодной стороны модуля. Оговорюсь, что в охлаждении не силён совсем, посему лепил алюминь, как попало.
Весь агрегат ставился на печку( печь-шведка), точнее на её чугунную плиту, перед растопкой(температура чугунины максимум-до 250 градусов). Эффективная температура на плите держится около 3 часов, средняя выработка энергии в эти часы – 2-2.5 ватт/час. За одну топку получается около 6 ватт энергии кошкины слёзы. Печь топилась каждый день, поэтому в месяц выходило что то около 200 ватт. К выводам агрегата крокодилами подключался простой стабилизатор( из набора e-kits) и потом заряжались пальчиковые батарейки.
В таком виде, в силу маломощности, перспектив я не увидел

Читайте также:  Штативы для лазерного уровня: разновидности, марки, выбор, использование

Были приобретены модули Пельтье американские от Thermal Enterprises ( вот такие: Model CP1-12730
62mm x 62mm x 3.8mm
Maxiumu power consumption 545 Watts
Operates from 0-16 volts DC and 0-32 amps
Operates from -60 deg C to +180 deg C
Each device is fully inspected and tested
Fitted with 6-inch insulated leads
Perimeter sealed for moisture protection)
Блок из 4 шт этих Гигантиков, соединённых последовательно. Общая тепловая мощность 2180Вт. Радиатор снизу и сверху алюминий+ вентилятор большой.
Подключены были первый год к большому контроллеру (на фото), во второй год – к малому (на фото 30А), все подключения шли через ваттметры (на фото), люблю я их, удобно. Вот мощность с них и снимал – правый нижний угол – мощность на данный момент, левый нижний общая выработка.
0ватт – когда печь холодная, потом постепенное увеличение до прим 30ватт (максимум, что наблюдал, без записи это 37ватт), потом остывание и опять 0 ватт.

Все что выше – это цитаты с Форумхауса 2011-2014 годов.
Теперь о том, что есть сейчас. И о опыте.
Маленький и маломощный ТЭГ на одном элементе Пельтье сгорел на второй год. Не предназначены они все таки для печки. А вот большой блок из мерканцев вполне живой

Хотя года два я его и не доставал. Расчехлил его только в декабре 19-го. Солнца было мало и в качестве малой поддержки покатил.
Итак конструкция: четыре элемента, последовательно соединённых, между двумя ал.радиаторами. Нижний радиатор для того, чтобы немного снизить температуру чугунины, а верхний, чтобы рассеять побыстрей максимум. Сверху ручка. Снял-поставил обратно. Провода на автомат

А с него, через DC-DC преобразователь, на аккумуляторы.
В первые года крепилась еще стойка с вентилятором для обдува радиатора, но потом выкинул ее. Не нужна. Проще передвинуть по чугунине печки куда нибудь на край. Там где похолодней.
Этой зимой топлюсь осиной и липой в основном, а от них жара мало. И чугунина особо и не разогревается. Почти нужные 180 градусов и есть.
Теперь по выработке. Жить на такой выработке невозможно. Только в качестве хобби или для малой подзарядки аккумуляторов.
Реальный КПД на производство энергии с них, при дельте в 60градусов – 2,4%. То есть от 2 с лишним штатных киловатт остается 52 ватт в час.
У меня при средней топке в 2.5-3 часа, идет выработка энергии до 5 часов(вместе с остыванием). И суточная выработка от 140 до 190 ватт. В месяц около 5квт.
Последние года я забросил эту игрушку, потому как и ветряк и солнечные батареи даже зимой дают на порядок больше, но в этом году как-то звезды неудачно сошлись. И контроллер ветряка полетел. Пришлось две недели новый ждать. И солнца до нового года почти не было. Поэтому и вытащил с антресоли этот агрегат.
Но на 21 января он опять закинут на антресоль.

PS стоили 8 лет назад такие штатовские элементы на ебэе 25$. Сейчас таких не видел, только гонконгские.

PPS есть у меня почти со школьных лет приятель Витя. Человек очень сложной судьбы. Сейчас он вроде как бомж. И живет в основном рядом или под или над тепломагистралями. Вот ему я подарил пять лет назад такую установку. Бочины трубы больше 100 градусов, и 24 часа в сутки. Теперь Он с нотебуком не расстается. И лампочка светит постоянно.

Эта поебота предполагает топиться мелкими дровами – это геморрой, хотя бы потому что они горят быстро и неэффективно. Еще хрень конструкции заключается в подкидывании дров сверху.

Достоинствами элементов Пельтье можно назвать следующие факты:
  • Компактный корпус элементов, позволяет монтировать его на плату с радиодеталями.
  • Нет движущихся и трущихся частей, что повышает его срок службы.
  • Позволяет соединение множества элементов в один каскад, по схеме, позволяющей уменьшать температуру очень горячих деталей.
  • При смене полярности питающего напряжения элемент станет работать в обратном порядке, то есть, стороны охлаждения и нагрева поменяются местами.

Такие генераторы электричества существуют пока чисто теоретически, но можно надеяться на будущее развитие этого направления. В свое время французский изобретатель не нашел применения своему открытию.

Блог технической поддержки моих разработок

Дроссель L1 должен быть индуктивностью 300-400 мкГн и током насыщения 5 А. Я выполнил его на Ш образном сердечнике Ш36x18x10 2500НМС. Намотал 65 витков, зазор 1 мм.

Технологическая часть

У нас был радиатор, алюминиевая пластина, элемент Пельтье, горстка радиодеталей, кусок фольгированного текстолита и самые разные винтики и гайки. Дальше не помню.

Итак, все компоненты собраны, можно приступать к сборке.

Прошу прощения за размеченную и просверленную в двух местах пластину – до меня только после дошло, что неплохо бы фотографировать весь процесс сборки с самого начала.

Первая неприятность, которая меня подстерегала – это 12-вольтовый штатный вентилятор на радиаторе. Так как я собираюсь добывать всего 5 вольт, да еще и при довольно небольшом максимальном токе, то это могло создать проблему.

Сначала я закинул удочки во все радио- и компьютерные магазины Перми, однако нигде не нашлось вентилятора 80х80 миллиметров на 5 вольт. А если и были, то меньших размеров и на ток более 200 мА, что было слишком много.

Затем я покопался на Ибее и обнаружил, что нужный мне вентилятор стоит от 300 рублей. Но надеяться на скорую доставку было бессмысленно, и поэтому я оставил этот вариант как резервный.

И только после всех поисков я догадался включить штатный 12-вольтовый вентилятор к 5-вольтовому источнику напряжения. Оказалось, что он вполне неплохо дует, и при этом потребляет не очень большой ток. Поэтому я решил пока оставить его, а после проведения испытаний при необходимости заказать вентилятор на Ибее.

Я разметил алюминиевую пластину и просверлил в ней два отверстия для крепления радиатора и два – для платы преобразователя напряжения. Отверстия я сделал диаметром 4 миллиметра (под винты из конструктора), а с внешней стороны расширил их до 7,5 миллиметров, чтобы скрыть шляпки винтов. После этого я скруглил напильником острые углы и прошелся крупной наждачкой по всем поверхностям пластины, и мелкой – по месту прижатия элемента Пельтье.

На этом обработку подложки я посчитал завершенной и приступил к изготовлению преобразователя напряжения.
Импульсный повышающий преобразователь напряжения собран на ИМС L6920, которая начинает работать при входном напряжении 0,8 вольт и позволяет снять со своего выхода фиксированное напряжение 3,3 или 5 вольт, или изменяемое от 1,8 до 5,5 вольт.

Принципиальная схема преобразователя является типовой и взята из даташита.

Для получения 5 вольт на выходе схемы ножка 1 соединена с общим проводом. Также настроена выдача низкого уровня на ножке 3 при падении входного напряжения ниже 1,5 вольт.

Для схемы была разведена печатная плата, на которой предусмотрено крепление к основанию-подложке с помощью все тех же деталей от детского конструктора. За перегрев платы я не беспокоюсь, так как она имеет принудительное охлаждение потоком воздуха, выдуваемым из радиатора.

Пришлось повозиться с макросом корпуса, в котором была купленная мной микросхема. На сайте магазина значилось, что она в корпусе SSOP-8. Как оказалось, в стандартном наборе макросов Sprint Layout нет такого корпуса. Я нашел чертеж корпуса SSOP-8 и сделал макрос, после чего развел плату. После пробной печати выяснилось, что микросхема несколько шире, и на свои контактные площадки не помещается. Гугление конкретной модели микросхемы (L6920D) привело меня на сайт Чип-Дипа, где я узнал, что ИМС с индексом D изготавливается в корпусе TSSOP-8. Почесав затылок, я нашел чертеж этого корпуса, создал макрос и переразвел плату. Теперь все оказалось правильно.

Плата изготовлена при помощи ЛУТа и собрана. Оказалось, что корпус TSSOP-8 паять без фена очень неудобно. Но мы люди тертые, FTDI-микросхемы с шагом ножек 0,4 миллиметра паяли.

Теперь можно заняться установкой элемента Пельтье и радиатора. Подложку и радиатор в местах контакта с элементом я намазал термопастой. Затем стянул получившийся «бутерброд» гайками.

Оказалось, что плата преобразователя не влезает, упирается входным разъемом в радиатор, слегка не рассчитал. Перевернул крепежные скобы, плату вывесил наружу, а для защиты элементов от механических повреждений добавил еще две скобы. Вот что в итоге получилось:

Теперь можно проверить работоспособность генератора. Я нагревал его на газовой горелке. Вентилятор решил пока не ставить.

Для начала оказалось, что я перепутал полярность подключения элемента к преобразователю. Хотя вроде бы все было правильно – черный провод – к минусу, красный – к плюсу. Однако работать генератор не хотел. Тогда я изменил полярность подключения элемента.

Генератор заработал – сначала загорелись оба светодиода, сигнализируя о наличии 5 вольт на выходе и низком напряжении на входе, затем красный светодиод погас – напряжение поднялось выше полутора вольт.

К моему неудовольствию оказалось, что без вентилятора через пару минут работы системы радиатор ощутимо нагрелся. Так дело не пойдет.

На следующий день я прогулялся по металлорынку и нескольким компьютерным барахолкам, но на мой вопрос о 5-вольтовых вентиляторах везде разводили руками и советовали сходить «еще вон в то место», в котором я уже был пару минут назад. В итоге я поехал домой не солоно хлебавши.

Дома я провел эксперимент по запитке штатного 12-вольтового вентилятора от выходных 5 вольт преобразователя. Результаты меня не порадовали – преобразователь с явной неохотой погасил красный светодиод, а вентилятор несколько секунд слабо подергивался, пытаясь запуститься. Воздушного потока от работающего в полсилы вентилятора оказалось недостаточно для нормального охлаждения – радиатор так же быстро нагрелся, хоть и не обжигал теперь пальцы. В итоге вентилятор я решил все же заказать с Ибея.

Дома я провел эксперимент по запитке штатного 12-вольтового вентилятора от выходных 5 вольт преобразователя. Результаты меня не порадовали – преобразователь с явной неохотой погасил красный светодиод, а вентилятор несколько секунд слабо подергивался, пытаясь запуститься. Воздушного потока от работающего в полсилы вентилятора оказалось недостаточно для нормального охлаждения – радиатор так же быстро нагрелся, хоть и не обжигал теперь пальцы. В итоге вентилятор я решил все же заказать с Ибея.

Из диодов и транзисторов

Фактически любой элемент Пельтье представляет собой гирлянду из последовательно соединенных диодов, работающих в режиме пробоя. В сущности, любой электронный компонент, пропускающий ток в одном направлении и препятствующий его прохождению в обратном, построен на принципах соединения полупроводников p-n типа. Что в свою очередь наводит на мысли о схожести системы на искомую конструкцию, аналогичную той, которую имеет модуль Пельтье. Если брать во внимание диоды с пластмассовой оболочкой (включая излучающие свет), мешает доступу к самим контактным пластинам из разных металлов только сам корпус устройства.

Вот они, две пластины полупроводника в прозрачном диоде:

Случай транзисторов аналогичен, конечно учитывая то, что в большинстве из них три контакта, два из полупроводника одного типа и один (меньший) другого. Хотя избавиться от корпуса, если он металлический, проще, что довольно распространено у элементов названого типа — достаточно срезать верхнюю крышку и получить доступ к открытым контактным пластинам.

Читайте также:  Цементная плитка в современном оформлении интерьера

Металлический транзистор со снятой крышкой:

Саму процедуру избавления от корпуса возложим на читателей, с рекомендацией попробовать нагрев, кислоту или механическое снятие преграды. Что касается соединения контактных площадок, здесь некоторые фанаты, судя по имеющейся информации, использовали меднение их верхушек электрическим методом. Впоследствии к подготовленным участкам осуществлялась пайка проводящих контактов.

После получения требуемых металлов, главное, что нужно помнить при их подключении — направление прохождения тока и последовательное соединение, выглядящее, как p-n-p-n-p-n, учитывая тип полупроводников. Кроме того, чем больше будет использовано элементов в конструкции, вне зависимости от их размера, тем и выше КПД получившегося генератора или устройства создающего тепло вместе с холодом.


Фактически любой элемент Пельтье представляет собой гирлянду из последовательно соединенных диодов, работающих в режиме пробоя. В сущности, любой электронный компонент, пропускающий ток в одном направлении и препятствующий его прохождению в обратном, построен на принципах соединения полупроводников p-n типа. Что в свою очередь наводит на мысли о схожести системы на искомую конструкцию, аналогичную той, которую имеет модуль Пельтье. Если брать во внимание диоды с пластмассовой оболочкой (включая излучающие свет), мешает доступу к самим контактным пластинам из разных металлов только сам корпус устройства.

Термостат на элементе Пельтье

Данный термостат предназначен для автоматического поддержания заданной температуры в рабочей зоне вне зависимости от температуры окружающей среды. Т.е. автоматически производится как нагрев, так и охлаждение в зависимости от того, какая задана температура рабочей зоны и какова температура окружающей среды.

Датчиком температуры является интегральная микросхема (ИМС) аналогового электронного термометра IL135 (3 вывода, корпус ТО-92). Термостат одной ручкой обеспечивает перекрытие всего диапазона температур работы IL135, от отрицательных до положительных значений температуры, согласно графика рис. 1 [1].

Электрическая принципиальная схема термостата представлена на рис. 2. Весь диапазон задаваемых температур перекрывается переменным резистором R7 (единственный орган управления термостатом) в соответствии с измерительным мостом из даташита [2].

Термоэлементом, обеспечивающим как нагрев, так и охлаждения рабочей зоны, является элемент Пельтье [3] – представляет собой пластину полупроводника, в зависимости от полярности приложенного напряжения одна сторона пластины нагревается, а другая охлаждается. Пластина элемента Пельтье имеет толщину несколько миллиметров, чтобы в режиме охлаждения нагревающаяся сторона не оказывала влияние на охлаждающуюся, на нагревающейся стороне должен стоять и включаться кулер (радиатор с вентилятором). Включение кулера M1 обеспечивает транзистор VT14. При необходимости аналогично тому, как в режиме охлаждения транзистором VT14 включается вентилятор охлаждения, в режиме нагрева параллельно VT13 так же, как VT14, может быть подключен транзистор для включения дополнительного нагревателя. Возможные схемы подключения нагревателя показаны на рис. 5 – 8. Дополнительный нагреватель располагается снаружи (вне) рабочей зоны и обеспечивает подогрев радиаторов охлаждения кулеров в режиме нагрева рабочей зоны.

Из элементов Пельтье выкладываются стенки рабочей зоны. Чем больше элементов Пельтье присутствует в периметре стенок рабочей зоны, тем эффективнее (быстрее) устанавливается заданная температура в рабочей зоне, перекрывается весь температурный диапазон термостата. При необходимости рабочая зона целиком, как домик, может быть выложена из элементов Пельтье, внешне это будет выглядеть как коробочка из кулеров. Схема (выходной реверсивный усилитель на транзисторах VT8 – VT16) позволяет подключать последовательно-параллельные цепочки из элементов Пельтье суммарным напряжением до 100 Вольт и током до 30 Ампер, определ. параметрами указанных на схеме транзисторов. Эти же условия распространяются на включение вентиляторов, т. к. используются одни и те же транзисторы. Схема управления, элементы Пельтье и вентиляторы могут запитываться как от одного общего источника питания, так и от разных, соответственно E1 – E3.

Реверсивный усилитель с более скромными параметрами можно собрать на биполярных транзисторах по схеме рис. 3.

Термостат работает следующим образом. На резисторах R2 – R10 собран измерительный мост, в одну из диагоналей которого включён датчик температуры ИМС IL135 (DA1), а в другую потенциометр задания R7. Для электрической схемы IL135 представляет собой стабилитрон, напряжение стабилизации которого при токе стабилизации 1 мА зависит от температуры, согласно графика рис. 1, 10 мВ/°K. Напряжение рассогласования измерительного моста поступает на входы компараторов DA2, DA3.1. Компараторы DA2.1, DA2.2 управляют работой реверсивного усилителя на транзисторах VT8 – VT16, обеспечивающего требуемую полярность включение элемента Пельтье EK1. Полярность подводимого к элементу Пельтье напряжения изменяется при изменении режима работы с нагрева на охлаждение и наоборот.

На компараторе DA3.1 собран сигнализатор обрыва датчика температуры. Если контакт с датчиком температуры прервался, либо датчик не подключен, потенциал на инвертирующем входе DA3.1 становится выше, чем на неинвертирующем входе — компаратор DA3.1 срабатывает, переключается в , открывается VT6, загорается светодиод VD3, сигнализирующий об обрыве датчика температуры; прочие светодиоды, индицирующие режимы работы термостата, при этом гаснут, термоэлемент Пельтье отключается: нагрев отключается естественным путём – компаратор нагрева DA2.2 переключается в аналогично компаратору DA3.1; а охлаждение отключается посредством диода VD2. Светодиод VD8 “Норма” гаснет, т.к. переключившийся в компаратор DA3.1 закрывает транзистор VT3, через который питается VD8.

Рассмотрим подробно работу термостата. Допустим, установившаяся в рабочей зоне температура оказывается выше требуемой, заданной переменным резистором R7. В этом случае потенциал на неинвертирующем входе компаратора DA2.1 (вывод 3) – напряжение с датчик температуры – оказывается выше напряжения задания, подаваемого на инвертирующий вход DA2.1 (вывод 2). На выходе DA2.1 (открытый коллектор) устанавливается +E1 через R15. Этим напряжением открываются транзисторы VT4, VT12, VT14, VT16. Открытый транзистор VT12 через R39 открывает VT11 – через элемент Пельтье EK1 начинает протекать постоянный ток от источника питания +E2 плюсом на правый (по схеме) вывод EK1.

Открытый транзистор VT16 через R26 открывает VT8. Через открытый VT8 и R30 происходит быстрый перезаряд емкости затвора VT10 на быстрое и надежное закрытие этого транзистора, что предотвращает сквозной ток через VT10, VT12, способный вызвать короткое замыкание источника питания +E2. Диоды VD9, VD10 обеспечивают дополнительную защиту от сквозных токов. Стабилитроны VD11, VD12 защищают транзисторы VT10 и VT11 от пробоя затвора в случае превышения напряжения источника питания +E2 величины 20 В.

Открытый VT4 обеспечивает включение светодиода индикации режима охлаждения VD4; и включение гистерезиса для порога срабатывания DA2.1: через открытый VT1 параллельно R9 подключается R22 несколько уменьшающий сопротивление соответствующего плеча измерительного моста, тем самым понижая потенциал на инвертирующем входе DA2.1 (входе задания). В результате для отключения процесса охлаждения (отключения элемента Пельтье) датчик температуры должен охладиться несколько сильнее того уровня температуры, который вызвал включение процесса охлаждения, – для отключения EK1 потенциал на датчике температуры DA1 должен опуститься несколько ниже той отметки, с которой процесс охлаждения начался. В процессе охлаждения, как только напряжение на датчике температуры DA1 – на неинвертирующем входе DA2.1 – опуститься ниже, чем на инвертирующем входе – станет меньше, чем напряжение задания – DA2.1 переключится в , процесс охлаждения прекратится, термоэлемент Пельтье EK1 будет отключен, загорится зелёный светодиод “Норма”, сигнализирующий о том, что заданная температура достигнута; схема гистерезиса компаратора DA2.1 сработает обратным образом: шунтирование резистором R22 резистора R9 прекратится, для повторного включения режима охлаждения температура датчика DA1 должна быть несколько выше той температуры, при которой процесс охлаждения прекратился.

Резисторы R4, R5 формируют зону нечувствительности термостата к изменению температуры рабочей зоны вблизи температуры термостабилизации, заданной R7. Благодаря R4, R5 потенциал на входе задания компаратора нагрева DA2.2 (на выводе 5), задающий порог включение нагрева, оказывается ниже того потенциала, который вызвал отключение режима охлаждения по входу задания компаратора DA2.1. Применительно к рассматриваемому эпизоду работы термостата датчик температуры должен прекратить свое инерционное охлаждение в пределах зоны нечувствительности – напряжение на датчике температуры не должно опуститься ниже порога срабатывания компаратора нагрева DA2.2 на включение нагрева. По мере естественного нагрева рабочей зоны под воздействием условий окружающей среды повышается потенциал на датчике температуры DA1, как только этот потенциал достигнет порога переключения DA2.1, вновь включится режим охлаждения. Процесс поддержания заданной температуры будет сопровождаться неспешным перемигиванием зелёного светодиод VD8 “Норма” и красного светодиода VD4 “Охлаждение”.

Если в силу изменившихся условий окружающей среды, после отключения режима охлаждения рабочая зона продолжает охлаждаться естественный путём, то через некоторое время снижающееся напряжение на датчике температуры DA2.1 достигнет порога переключения компаратора нагрева DA2.2 – включится режим принудительного нагрева рабочей зоны путём включения элемента Пельтье со сменой полярности подводимого к нему напряжения: будут открыты транзисторы VT10, VT13 мостового реверсивного усилителя, +Е2 подключается плюсом не левую по схеме сторону элемента Пельтье – зелёный светодиод VD8 “Норма” начнёт перемигиваться с красным светодиодом VD5 “Нагрев”. Взаимодействие R13 с R9 обеспечивает гистерезис для компаратора нагрева DA2.2.

Важными элементами являются С2, С3. Они предотвращают самопроизвольные вплоть до возбуждения переключения компараторов, когда напряжения на входах компаратора близки к напряжению срабатывания компаратора (почти равны между собой) и плавно изменяются. С2, С3 вносят существенно больший вклад в стабилизацию работы компараторов, чем гистерезис.

Каскад на транзисторе VT7 образует 2-ух входовой элемент для выключения светодиода VD8 “Норма”, когда работает нагрев или охлаждение.

Настройка термостата заключается в установке ширины зоны нечувствительности (ЗН) подстроечным резистор R4; и к градуировке шкалы R7 (задание) в значениях температуры по образцовому термометру, измеряющему температуру рабочей зоны. При этом нужно иметь в виду следующее. Чем шире ЗН, тем ниже точность поддержания температуры. Ширина ЗН определяется инерцией тепловых процессов нагрева и охлаждения, инерция зависит от оптимальности выбора суммарной мощности (количества) элементов Пельтье. Оптимальный выбор мощности термоэлемента соответствует неспешному перемигиванию зелёного и одного из красных светодиодов (VD4 “Охлаждение” или VD5 “Нагрев”). Если, расширяя ЗН, обнаруживается, что зелёный светодиод VD8 “Норма” горит подолгу, то значит мощность термоэлемента избыточна. О слишком узкой ЗН свидетельствует одновременное горение всех 3-ёх светодиодов. Разумеется, одновременно они гореть не могут, это так воспринимается их переключения с большой частотой, соответственно их яркость свечения будет в треть накала. Именно для такого случая в мостовом реверсивном усилителе важно надёжное запирание транзисторов для предотвращения сквозных токов к.з. Если одновременно горят 2 светодиода: зелёный и один из красных, нагрев или охлаждение, то это говорит о том, что мощности термоэлемента недостаточно, мощность на пределе, дальнейшее увеличение температурного задания резистором R7 может быть не выполнено – заданная более крайняя температура может быть не достигнута, зелёный светодиод не загорится, всё время будет гореть только 1 светодиод, нагрев или охлаждение, сигнализируя о соответствующем непрерывном режиме работы термостата, в зависимости от того, какое задание выставлено по отношению к температуре окружающей среды.

Подстроечный резистор R11 не обязателен. Если R7 градуируется впервые, не требуется полное соответствие работы термостата графику рис. 1, выдаваемые термодатчиком DA1 напряжения будут укладываться в требуемый вам диапазон температур, то R11 можно не устанавливать. В этом случае при замене DA1 придётся заново отградуировать R7, либо установить R11 и им уложиться в ранее отградуированную шкалу R7.

R11 необходим для проверки работоспособности платы термостата. Вместо датчика температуры DA1 подключается управляемый стабилитрон TL431, и вращением R11 в широких пределах устанавливаются различные напряжения на стабилитроне TL431, имитируя работу датчика температуры.

При желании к датчику температуры DA1 через эмиттерный повторитель на VT2 может быть подключена магнито-электрическая измерительная головка для стрелочной индикации температуры в рабочей зоне. Автором измерительная головка не подключалась, и значения соответствующих элементов на схеме не указаны.

Конструкция и детали. Для рис.2 маломощные VT1 – VT7 могут быть любыми соответствующей структуры на ток Iк не менее 20 мА и на напряжение Uк не менее 25 В. На схеме указаны КТ502, КТ503 лишь потому, что под их корпус и цоколёвку (КБЭ) разведена печатная плата, и они являются самыми распространенными в этой цоколёвке. Распространенными транзисторами с цоколёвкой (КБЭ) также будут: КТ3102, КТ3107; КТ209 от буквы Г и далее по алфавиту с любым буквенным индексом – все они могут быть применены в термостате. DA1 можно заменить на К1019ЕМ1, LM x35, где x – число от 1 до 3, характеризующее класс прибора. Дроссели L1, L2 изготавливаются из медной трансформаторной эмалированной проволоки Ø не менее 0,8 мм, наматываются виток к витку в бескаркасную однорядную катушку Ø от 5 мм и длиной мм 20. Диоды любые маломощные. Если будет использоваться высокое напряжение +E2, то VD9, VD10 должны быть на это напряжение, одни из самых распространённые маломощные высоковольтных диодов КД105. Светодиоды АЛ307 и аналогичные индикаторные на рабочий ток 10 mA.

Читайте также:  Что такое автоматическая частотная разгрузка и как она используется?

Чертёж печатной платы управляющей части термостата представлен на рис. 4. Силовая часть схемы автором изготавливалась отдельно, транзисторы VT10 – VT14 устанавливаются на радиаторы. Эти транзисторы выбираются исходя из требуемого тока и напряжения на термоэлементе Пельтье. В случае использования невысоковольтных VT8, VT9, из-за более высоких токов утечки возможно понадобится уменьшить R32, R33 до 47к и менее. Величина их сопротивления рассчитывается по формуле Iкбо * R ≤ 0,5 В. При этом нежелательно, чтобы соотношение R26:R32, R27:R33 было больше, чем 3:1.

Печатная плата управляющей части термостата односторонняя, оптимизирована для изготовления ручным способом. Все виды на плату, включая сборочный чертёж, даны со стороны меди-пайки-монтажа, что улучшает навигацию по плате при её ручном изготовлении, снижая вероятность возможных ошибок. Плата может быть изготовлена следующим образом. Чертёж платы, а именно места сверления отверстий, распечатывается на любой бумаге в масштабе 1:1. Если оригинальным чертежом платы является не компьютерный файл, а изображение в масштабе 1:1 на странице журнала, книги, то на просвет на кальку, или на любую иную бумагу, если просвет берётся на окне, переносятся места сверления отверстий. Лучше использовать лист тетради в клеточку, что позволяет точнее рисовать, производить коррекцию рисунка. Затем лист бумаги с нарисованными контуром платы и точками – местами будущих отверстий – разрезается в развёртку. В полученную развертку заворачивается заготовка платы, фиксируется каплей клея и сверлится прямо через бумагу. В зависимости от качества сверла и станка особо точные отверстия возможно придётся сперва наколоть шилом. Сторона меди просверленной заготовки платы зачищается мелкой нождачкой. Затем нитролаком или нитрокраской рисуются дорожки, контактные площадки. Инструмент – кисточка или рейсфедер. Если достаточно мелкую кисточку приобрести не удалось, то из кисточки удаляются лишние волоски. Чтобы лак потерял прозрачность и превратился в краску, в него выдавливается капля пасты из стержня шариковой ручки. Могут использоваться абсолютно любые водостойкие лакокрасочные материалы. Если плата будет травиться в не очень агрессивных травителях, то для рисования дорожек даже можно использовать некоторые типы перманентных маркеров. Самый простой нитролак запросто выдерживает травление в концентрированной азотной кислоте – в самом мощном и быстром травителе, который только может быть, плата травится всего несколько минут. А коль так, то использование нитроматериалов предпочтительно, т.к. они быстрее всего сохнут; нарисованная плата сохнет буквально на глазах в струе горячего воздуха из фена. Неагрессивными растворами для травления плат являются: раствор хлорного железа; раствор медного купороса (CuSO4) со столовой поваренной солью в пропорции 1:2, можно до насыщения, а можно 2 столовые ложки медного купороса и 4 ложки соли на 1 литр воды. После травления лакокрасочное покрытие удаляется механически или при помощи растворителя. Плата промывается, вновь зачищается, и облуживается. Вместо зачистки нождачкой плату можно обезжиривать – подготовка поверхности к нанесению покрытий может производиться не только механическим, но и химическим путём.

По такой же технологии в виде предварительной бумажной развёртки (лучше всего на миллиметровой бумаге) удобно изготавливать сложные лицевые панели, чтобы не производить утомительную разметку непосредственно на материале заготовки. Бумажной развёрткой может быть рисунок печатной платы распечатанный на глянцевой бумаге на лазерном принтере (жирность выставляется максимально возможная). Далее завёрнутая в такую развёртку заготовка платы (медью к распечатанным дорожкам) сверху разглаживается горячим утюгом до спекания тонера с медью. Достаточно 5 мин. разглаживаний. Готовность проверяется по невозможности оторвать бумагу от платы без маломальских усилий. Затем бумага смывается: в воде размокает и отслаивается, тонер остаётся спечённым с медью – плата готова к травлению, погружается в раствор для травления. Сторона платы, обращённая вниз ко дну ванночки с раствором, травится быстрее, но не должно быть соприкосновения со дном.

Как упростить схему термостата до терморегулятора, т.е. до устройства работающего только на нагрев для автоматического поддержания более высокой температуры рабочей зоны по сравнению с температурой окружающей среды, показано на рис. 5. От существующих схем этот терморегулятор отличается наличием низковольтной светодиодной индикации режимов работы, по которой в т.ч. можно судить об оптимальности выбора мощности нагревателя; и наличием контроля целостности подключения датчика температуры.

MOSFET транзистор FDP18N50 (VT13) является сравнительно дефицитным. Его можно заменить на IGBT транзисторы на требуемый ток ТЭНов; а также тиристорным эквивалентом, собранным по схеме [4]. Распространённые высоковольтные MOSFET транзисторы рассчитаны на токи до 4 А, их можно использовать для включения сколь угодно мощных тиристоров, собрав усилитель по схеме рис. 6. Максимальный ток нагрузки в схеме рис. 6 равен удвоенному максимальному току одного тиристора, при использовании указанных на схеме КУ202H, M максимальный ток нагрузки (ТЭНов) равен 20 А – эквивалент использованию транзистора FDP18N50 в схеме рис. 5. Иные варианты подключения нагрузки показаны на рис. 7 – 8. R42, C6 в схеме рис. 8 защищают тиристоры от бросков напряжения, если коммутируемая нагрузка содержит значительную индуктивную составляющую.

Подстроечный резистор R11 не обязателен. Если R7 градуируется впервые, не требуется полное соответствие работы термостата графику рис. 1, выдаваемые термодатчиком DA1 напряжения будут укладываться в требуемый вам диапазон температур, то R11 можно не устанавливать. В этом случае при замене DA1 придётся заново отградуировать R7, либо установить R11 и им уложиться в ранее отградуированную шкалу R7.

Выбор модуля Пельтье

Прежде всего, как выбирать термоэлектрический модуль? Прежде всего, вам нужно знать ширину и длину процессора, или его ядра. В случае с процессорами, устанавливаемыми в гнездо, вам понадобится модуль, не больший размеров гнезда, но и брать слишком маленький не имеет смысла. Лучше всего, чтобы он был размером с процессор. Если же в компьютере установлен процессор в слот, то вам придётся покупать модуль размером с ядро процессора, хотя можете заказать и размером с картридж – будет стоить дороже. Потом вам понадобится знать мощность вашего процессора. Для некоторых она приведена в таблице мощностей процессоров. Если вашего процессора там нет – узнайте его мощность из документов на сайте производителя. Обычно, эта информация не скрывается от широких масс. Мощность модуля Пельтье должна быть не меньшей мощности вашего процессора, а чтобы почувствовать эффект, она должна быть большей раза в полтора-два. После того, как вы знаете мощность, убедитесь, что термоэлектрическая пластина выдаёт эту мощность именно на 12 Вольтах, а не на 36 и не на 24 В. В компьютере вам легче всего найти 12 В, и ни на какие другие предложения соглашаться нельзя. Если вы знаете разницу температур на холодной и горячей сторонах модуля Пельтье, то можете рассчитать и температуру ядра процессора с этим модулем. Формула здесь очень простая:

T=((мощность процессора)+(мощность модуля Пельтье))*(терм. сопротивление кулера)+(темп. воздуха)-(разность температур модуля)

Из этой формулы видно, что чем лучше кулер, тем эффективнее будет охлаждение. По краям обкладок TEC должен быть герметизирован, чтобы никакая влага не могла закоротить его электрические цепи. И было бы неплохо, если бы его провода заканчивались стандартным коннектором PC-Plug. Наш модуль имел следующие данные:

Производитель

Как видно, на блок питания при использовании термоэлектрического модуля ложится дополнительная весьма ощутимая нагрузка, так что этот момент тоже надо учитывать и покупать более мощный блок питания.

Производитель

Устройство для кипячения воды, работающее через USB на эффекте Пельтье

Работа призёра открытой городской научно-практической конференции «Инженеры будущего» в секции «Прикладная физика» среди работ учащихся 10−11 классов

Оказываясь вдалеке от электросети, люди сталкиваются с проблемой нагрева воды. Обычно приходится искать дрова и разводить костёр, но не всегда это возможно. В работе предлагается попробовать альтернативный вариант. Существуют переносные холодильники на эффекте Пельтье, но в продаже не найдено ни одного нагревателя, поэтому была выдвинута гипотеза:

Элемент Пельтье нагревается с одной стороны и охлаждается с другой. Предполагается, что если использовать его только как нагреватель, то КПД окажется почти вдвое меньше. И именно поэтому эффективнее оказываются нагревательные элементы, работающие по закону Джоуля-Ленца.

Цель: сравнить нагреватели, основанные на элементах Пельтье, с обычными электрическими и выбрать наиболее эффективный.

Задачи

  1. Ознакомление с литературой. Изучение принципа действия нагревателей.
  2. Сборка экспериментальной установки, основанной на принципе Пельтье.
  3. Подбор устройств, основанных на обычных способах нагрева.
  4. Экспериментальное определение потребляемой мощности для всех устройств.
  5. Сравнение КПД нагревателей в условиях потребления малого напряжения (походные условия).
  6. Оценивание, насколько безопасны в использовании те или иные виды нагревателей.
  7. Оценивание себестоимости изделий.
  8. Составление практических рекомендаций по использованию элементов Пельтье в качестве нагревателя.
  9. Проектирование собственного максимально эффективного, безопасного и удобного нагревателя.

Описание

Эффект Пельтье – это процесс, сопровождающийся появлением разницы температур на двух различных материалах при прохождении по ним электрического тока. Впервые объяснён академиком и изобретателем Ленцем.

Эффект Пельтье обычно применяется для охлаждения, так как нагрев возможен любым проводником по закону Джоуля-Ленца.

Для конструирования нагревателя на эффекте Пельтье была подобрана банка, подходящая по размерам. Поскольку банка протекала, она была загерметизирована.

Из пенопласта были вырезаны панели, которые крепятся к стенкам банки, и герметичная крышка, чтобы тепло не терялось. В крышке предусмотрено отверстие для термопары. Далее элементы Пельтье были прикреплены нагревающейся стороной к дну банки, поверхность которой заранее была покрыта термопастой. Охлаждающуюся сторону элементов соединили с алюминиевыми радиаторами, чтобы эта сторона элемента Пельтье охлаждалась быстрее. При такой конструкции радиаторы будут сильнее охлаждать холодную сторону Пельтье, а горячая сторона будет сильнее нагреваться.

Для электропитания элементов Пельтье необходимо подключить к ним источник тока напряжением 12 В. Параметры цепи и потребляемую мощность оценили и отрегулировали, проведя испытания прибора. Максимальное допустимое напряжение − 30 В. Максимальная допустимая сила тока – 3,6 А.

Схема изделия (3D-модель)

  1. Жестяная ёмкость
  2. Пенопластовые пластины
  3. Радиаторы
  4. Подставка
  5. Пельтье

Для экспериментальной части были выбраны обычный бытовой чайник, бытовая электроплита, кипятильник и проволока. По условиям испытаний все приборы включались к низковольтному источнику постоянного тока.

По результатам опытов было выявлено, что КПД элемента Пельтье не хуже, чем у других нагревателей, а лучше по всем параметрам.

Результат

  1. Собрана установка для исследования нагревательного действия элемента Пельтье.
  2. Подобраны устройства, основанные на обычных способах нагрева.
  3. Определена потребляемая мощность для всех устройств.
  4. Проведено сравнение КПД нагревателей в условиях потребления малого напряжения.
  5. Оценена себестоимость изделия.
  6. Начато проектирование собственного нагревателя на эффекте Пельтье.

В планах у авторов создать нагреватель, который будет кипятить воду, используя в качестве источника электроэнергии переносной аккумулятор, powerbank, или USB-разъём и ноутбук.

Из пенопласта были вырезаны панели, которые крепятся к стенкам банки, и герметичная крышка, чтобы тепло не терялось. В крышке предусмотрено отверстие для термопары. Далее элементы Пельтье были прикреплены нагревающейся стороной к дну банки, поверхность которой заранее была покрыта термопастой. Охлаждающуюся сторону элементов соединили с алюминиевыми радиаторами, чтобы эта сторона элемента Пельтье охлаждалась быстрее. При такой конструкции радиаторы будут сильнее охлаждать холодную сторону Пельтье, а горячая сторона будет сильнее нагреваться.

Ссылка на основную публикацию