Циркуляция воды в системе отопления

Как правильно сделать водяное отопление с естественной циркуляцией

Все гравитационные системы объединяет общий недостаток – отсутствие давления в системе. Любые нарушения во время проведения монтажных работ, большое количество поворотов, несоблюдение уклонов, моментально отражаются на работоспособности водяного контура.

Чтобы сделать грамотно отопление без насоса, учитывается следующее:

    Минимальный угол уклонов.

Тип и диаметр труб, используемых для водяного контура.

  • Особенности подачи и вид теплоносителя.
  • Тип и диаметр труб, используемых для водяного контура.

    Поиск неисправностей в двухтрубной системе отопления (продолжение)

    Автор: Дмитрий Белкин

    После написания первой статьи прошло уже довольно значительное время и я, в преддверии отопительного сезона 2011-2012, решил продолжить цикл, тем более, что вопросы на тему “сделал отопление, а оно не работает” продолжают поступать.

    К сожалению, методы поиска неисправностей, которые не лежат на поверхности, довольно трудно поддаются классификации, и я решил посвятить вопросу неисправностей системы отопления несколько небольших статей. В этой статье я хотел бы рассмотреть проблему слабой циркуляции теплоносителя и неравномерного прогрева радиаторов. Сам я не совершал никогда ошибок, подобных описываемым и, соответственно, здесь мне придется немного потеоретизировать.

    Итак, имеем двухтрубное отопление. Рассмотрим одну ветвь этой системы отопления, обслуживающую, скажем условно, один этаж. Вот ее схема. Ток воды показан стрелками.

    Радиатор, находящийся ближе к началу ветви, или к котлу, горячий. Это самый левый крайний радиатор. Радиаторов может быть значительно больше, чем показано на схеме. Например, в моем крохотном домишке 3 ветви. Самая длинная имеет длину порядка 25 метров и на ней стоит 5 радиаторов. Проблема в том, что радиаторы, следующие за первым, либо вовсе холодные, либо имеют температуру значительно ниже, чем у первого. Причем, чем дальше к концу ветви, тем радиаторы холоднее и холоднее.

    Первый радиатор у нас горячий (рука еле терпит). Щупаем следующие и обнаруживаем, что все радиаторы горячие, но их температура уменьшается по мере продвижения по ветви. Последний уже не горячий, а чуть теплый. Возвращаемся к первому радиатору, но щупаем его низ. Щупаем низ всех радиаторов по ветви и обнаруживаем, что низ радиаторов значительно холоднее их верха. Даже у первого.

    Есть ли у нас в системе циркуляционный насос?

    Если его нет, то проблему ускорения циркуляции решить довольно сложно. Нужно ставить ниже котел, нужно увеличивать диаметр стояка, нужно увеличивать диаметр подающей и обратной ( горизонтальные магистрали) нужно менять трубы на такие, у которых внутренняя поверхность более гладкая, нужно уменьшать количество углов и делать их тупыми, то есть градусов 100 или 110. По крайней мере больше, чем 90.

    Если циркуляционный насос есть, то . решить проблему вовсе не проще.

    Для начала проверим, работает ли насос. Сделать это в общем случае не так просто как кажется. Хороший циркуляционный насос работает абсолютно бесшумно и без вибраций. Услышать его работу можно только приложив к нему ухо, а он горячий и можно обжечься! Я не рекомендую, вам, уважаемые друзья рисковать своими органами! Запаситесь медицинским стетоскопом или просто трубкой большого диаметра (подойдет кусок пластмассовой трубы от канализации диаметром 50 мм. Приложите один конец к мотору, а в другой конец засуньте свое ухо. Если вы услышите, как работает мотор, это хорошо!

    Кстати, если ваш мотор работает шумно, то он, возможно сломался и его надо заменить, чтобы не стало мучительно холодно, но куда большая вероятность того, что в нем бурлит воздух. Может быть из-за этого и циркуляция слабая? В этом случае выключите мотор и спустите воздух. На любом моторе для этого есть средства. А можно спустить воду из насоса прямо пока он работает, но делать это надо крайне осторожно, чтобы его (мотор) не сломать. Как только из мотора перестанет выходить вода с пузырями, процедуру выпуска воздуха надо прекратить, то есть, все отверстия закрутить и добавить в систему свежей воды, доведя давление по барометру до нужного уровня.

    Работает насос? Отлично! Можно увеличить на нем скорость циркуляции? Замечательно! Увеличиваем смотрим, что получилось. Если все радиаторы стали равномерно горячее, то считаем, что у нас просто слишком длинная ветвь и мы использовали слишком тонкие трубы. Возможно, что трубы плохого качества или есть какие-нибудь препятствия для циркуляции в виде большого количества углов, вмятин на трубах и так далее. Дальше мы даем себе обещание когда-нибудь все переделать и живем спокойно. Ну может быть меняем циркуляционный насос на более мощный. При этом мы миримся с увеличенными затратами на электричество. А что же вы думали? Так просто что ли в большом доме жить? За все приходится платить.

    Предположим, что увеличение скорости циркуляции на моторе не дало ничего.

    Считаем, что это чудо! Что-то должно было измениться, либо мотор неисправен, все-таки. Как минимум на первом радиаторе ветви низ должен стать почти таким же горячим, как и верх. Предположим, что чуда не было! На первом радиаторе и верх и низ стали горячими, но дальше по ветви температура нас все также не устраивает.

    Я надеюсь, у вас есть вентили как минимум на входах всех радиаторов? Перекрываем вентиль первого радиатора наполовину и щупаем остальные. Стали они горячее? Если да, то делаем следующий вывод.

    После вынесения этого замечательного вывода мы считаем, что легко отделались и живем, регулируя циркуляцию в нашей ветви вентилями. Это, конечно, не добавляет комфорта. Меняем вентили на автоматические термостатические и получаем, я надеюсь, вполне нормальное отопление, которое регулирует само себя. После этого живем спокойно.

    Следующий вариант. Обе магистрали горячие, а радиаторы холодные. При этом вентили на радиаторах открыты полностью.

    По большому счету это тоже чудо. В этом случае радиаторы не могут быть абсолютно холодными. А вот если по магистралям вода носится со скоростью гоночной машины, а в радиаторы не заходит, то это означает, что проблема либо в радиаторах во всех сразу), либо в узле подключения радиатора к магистрали, причем не обязательно узел верхний, входной, так сказать. Если проблема в нижнем, выходном узле, то эффект будет точно такой же. Другими словами, если перекрыть выход радиатора, то он будет абсолютно холодным, как если бы мы перекрыли вход. Почему регулирующие вентили ставят сверху? Только чтобы не нужно было наклоняться слишком низко, чтобы их регулировать, и ногой не задеть случайно.

    Если рассматривать неисправности радиаторов, то куда больше вероятность того, что проблема будет только в одном из них, но не во всех сразу. В этом случае и разбираться нужно с одним. Самое вероятное, что проблема в вентиле. Вот с него, я думаю, и стоит начинать.

    И последнее. Если мы имеем воздушную пробку или засор в середине магистрали, то что мы получаем? Все радиаторы и магистраль до засора будут горячие, а подающая и обратная магистрали сразу за работающим радиатором будут холодные.

    Вот не поленюсь даже схему нарисовать

    Вот и все. Надеюсь, эта статья стала для кого-то полезной. Как обычно буду рад комментариям и “случаям из жизни”.

    Работает насос? Отлично! Можно увеличить на нем скорость циркуляции? Замечательно! Увеличиваем смотрим, что получилось. Если все радиаторы стали равномерно горячее, то считаем, что у нас просто слишком длинная ветвь и мы использовали слишком тонкие трубы. Возможно, что трубы плохого качества или есть какие-нибудь препятствия для циркуляции в виде большого количества углов, вмятин на трубах и так далее. Дальше мы даем себе обещание когда-нибудь все переделать и живем спокойно. Ну может быть меняем циркуляционный насос на более мощный. При этом мы миримся с увеличенными затратами на электричество. А что же вы думали? Так просто что ли в большом доме жить? За все приходится платить.

    Системы отопления дачных и загородных домов. Котлы, газовые колонки, водонагреватели – Ремонт, сервис, эксплуатация. Рекомендации по монтажу и установке.

    • Автоматика и неисправности котлов Bosch Gaz 6000
    • Регулировки газового котла Протерм Гепард
    • Ошибки котлов Навьен Делюкс
    • Газовый котел АОГВ-11,6-3 Эконом
    • Эксплуатация твердотопливных котлов Протерм
    • Конструкция газовых котлов Ferroli Domina
    • Подключения котла Baxi main four
    • Коды ошибок котлов Ariston
    • Ошибки и неисправностей котлов Риннай
    • Коды ошибок настенных котлов Ferroli
    • Коды ошибок котлов Нева Люкс
    • Ремонт и коды ошибок котлов Viessmann Vitopend
    • Коды ошибок котлов Buderus
    • Ошибки и неисправностей котлов Vaillant
    • Коды ошибок котлов Baxi
    • Ошибки котлов Arderia

    НЕИСПРАВНОСТИ И РЕМОНТ

    • ARISTON
    • THERMEX
    • TIMBERK
    • ЭЛЕКТРОЛЮКС
    • ГОРЕНЬЕ
    • НЕВА
    • ОАЗИС
    • ВЕКТОР

    РЕМОНТ ГАЗОВОЙ КОЛОНКИ

    ЗАПАСНЫЕ ЧАСТИ КОТЛОВ

    • Baxi Eco Four
    • Baxi Eco-3
    • Baxi Fourtech
    • Baxi Main-5
    • Baxi Main Four
    • Baxi Nuvola-3 Comfort
    • Протерм Медведь KLOM
    • Протерм Медведь TLO
    • Протерм Медведь PLO
    • Протерм Медведь KLZ
    • Протерм Скат
    • Ferroli Domina
    • Ferroli Domina Pro / Special
    • Ferroli Fortuna
    • Buderus Logano S111
    • Buderus Logano G234
    • Buderus Logano G221
    • Buderus Logano G124

    К обратной же магистрали подсоединяют и расширительный бак, о котором речь пойдет ниже, в отдельной главе.

    Мифы «гравитационки»

    Несмотря на то что отопительная техника с каждым годом совершенствуется и дополняется новыми прогрессивными техническими решениями и высокоэффективным оборудованием, системы водяного отопления с естественной циркуляции теплоносителя продолжают занимать весьма существенную долю в теплоснабжении. Они широко и успешно применяются как в индивидуальном жилищном и коттеджном строительстве, так и при сооружении объектов в районах, где электроснабжение либо отсутствует, либо осуществляется с перебоями.

    Рис. 2. Пример двухтрубной системы отопления с естественной циркуляцией

    Для этого используем пример классической двухтрубной гравитационной системы отопления (рис. 2), со следующими исходными данными: первоначальный объем теплоносителя в системе – 100 л; высота от центра котла до поверхности нагретого теплоносителя в баке Н = 7 м; расстояние от поверхности нагретого теплоносителя в баке до центра радиатора второго яруса h1 = 3 м, расстояние до центра радиатора первого яруса h2 = 6 м.

    Температура на выходе из котла – 90 °С, на входе в котел – 70 °C. Действующее циркуляционное давление для радиатора второго яруса можно определить поформуле:

    Δp2 = (ρ2ρ1) · g · (Hh1) = (977 – 965) · 9,8 · (7 – 3) = 470,4 Па.

    Для радиатора первого яруса оно составит:

    Δp1 = (ρ2ρ1) · g · (Hh1) = (977 – 965) · 9,8 · (7 – 6) =117,6 Па.

    При более точных расчетах учитывается также остывание воды в трубопроводах.

    Миф 1. Трубопроводы должны прокладываться с уклоном по направлению движения теплоносителя. Не спорим, так было бы не плохо, но на практике это требование не всегда удается выполнить. Где-то балка покрытия мешает, где-то потолки устроены в разных уровнях и т.п. Что же будет, если выполнить подающий трубопровод с контруклоном (рис. 3)?

    Рис. 3. Пример выполнения верхнего розлива с контруклоном

    Если грамотно подойти к решению этого вопроса, то ничего страшного не произойдет. Циркуляционное давление если и снизится, то на ничтожно малую величину (несколько паскалей), за счет паразитного влияния остывающего в верхнем розливе теплоносителя. Воздух из системы придется удалять с помощью проточного воздухосборника и воздухоотводчика. Пример этого устройства показан на рис. 4. Дренажный кран служит для выпуска воздуха в момент заполнения системы теплоносителем. В «крейсерском» режиме этот кран закрыт. Такая система останется полностью работоспособной.

    Читайте также:  Создаем двери из дерева или фанеры своими руками: Пошагово +Видео

    Рис. 4. Пример устройства для выпуска воздуха из верхнего розлива

    Миф 2. В системах с естественной циркуляцией охлажденный теплоноситель вверх двигаться не может. Это вовсе не так. Для циркуляционной системы понятие «верха» и «низа» очень условны. Если обратный трубопровод на каком-то участке поднимается, то где-то он на эту же высоту и опускается. То есть гравитационные силы уравновешиваются.Все дело лишь в преодолении дополнительных местных сопротивлений на поворотах и линейных участках трубопровода. Все это, а также возможное остываниетеплоносителя на участках подъема должно учитываться в расчетах. Если система грамотно рассчитана, то схема, представленная на рис. 5, вполне имеет право на существование. Мало того, в начале прошлого века такие схемы достаточно широко применялись, несмотря на свою слабую гидравлическую устойчивость.

    Рис. 5. Схема с верхним расположением обратного трубопровода

    Миф 3. В гравитационных системах подающий трубопровод должен проходить над всеми ярусами радиаторов. Это тоже совсем не обязательно. Расположение подающего трубопровода с надлежащим уклоном под потолком верхнего этажа или на чердаке позволяет удалять воздух из системы через открытый расширительный бак. Однако проблему удаления воздуха можно решить и с помощью автоматических воздухоотводчиков (рис. 6) или отдельной воздушной линии.

    Рис. 6. Схема с нижним расположением подающей линии

    Миф 4. При естественной циркуляции теплоносителя радиаторы обязательно должны располагаться выше центра теплогенератора (котла). Это утверждение справедливо только при расположении отопительных приборов в один ярус. При количестве ярусов два и более, радиаторы нижнего яруса можно располагать и ниже котла, что, естественно, должно быть проверено гидравлическим расчетом. В частности, для примера, показанного на рис. 7, при H = 7 м, h1 = 3 м, h2 = 8 м, действующее циркуляционное давление составит:

    g · [H · (ρ2ρ1) – h1 · (ρ2ρ1) – h2 · (ρ2ρ3)] = 9,9 · [ 7· (977 – 965) – 3 · (973 – 965) – 6 · (977 – 973)] = 352,8 Па.

    Здесь: ρ1 = 965 кг/м 3 – плотность воды при 90 °С; ρ2 = 977 кг/м 3 – плотность воды при 70 °С; ρ3 = 973 кг/м 3 – плотность воды при 80 °С.

    Циркуляционного давления вполне достаточно для работоспособности такой системы.

    Рис. 7. Однотрубная гравитационная система с расположением радиаторов ниже котла

    Миф 5. Гравитационную систему отопления, рассчитанную на водяной теплоноситель, можно безболезненно перевести на незамерзающий теплоноситель. Без расчета такая замена может привести к полному отказу системы отопления. Дело в том, что этилен- и полипропиленгликолевые растворы обладают значительно большей вязкостью, чем вода. Кроме того, удельная теплоемкость этих смесей несколько ниже, чем у воды, что требует, при прочих равных условиях, ускоренной циркуляции теплоносителя. Эти два фактора вместе взятые существенно увеличивают расчетное гидравлическое сопротивление системы, заполненной теплоносителями с низкой температурой замерзания.

    Миф 6. В открытый расширительный бак необходимо постоянно доливать теплоноситель, т.к. он интенсивно испаряется. Да, это действительно большое неудобство, но его можно легко устранить. Для этого используется воздушная трубка и гидравлический затвор, устанавливаемый, как правило, ближе к нижней точке системы, рядом с котлом (рис. 8). Такая трубка служит воздушным демпфером между гидравлическим затвором и уровнем теплоносителя в баке, поэтому, чем больше ее диаметр, тем лучше. Тем меньше будет уровень колебаний уровня в бачке гидрозатвора. Некоторые умельцы умудряются закачивать в воздушную трубку азот или инертные газы, тем самым предохраняя систему от проникновения кислорода.

    Рис. 8. Воздушная трубка с гидрозатвором

    Миф 7. Насос, установленный на байпасе главного стояка, не создаст эффекта циркуляции, т.к. установка запорной арматуры на главном стояке междукотлом и расширительным баком запрещена. Можно поставить насос на байпасе обратной линии, а между врезками насоса установить шаровой кран. Такое решение не очень удобно, т.к. каждый раз перед включением насоса надо не забыть перекрыть кран, а после выключения насоса – открыть. Установка обычного пружинного обратного клапана невозможна из-за его значительного гидравлического сопротивления. Домашние мастера пытаются препарировать обратные клапаны, снимая с них пружинки совсем или устанавливая их «наоборот» (превращая клапан в нормально открытый). Такие переделанные клапаны создадут в системе неповторимые звуковые эффекты из-за постоянного «хлюпанья» с периодом, пропорциональным скорости теплоносителя.Есть гораздо более эффективное решение: на главном стояке между врезками байпаса устанавливается поплавковый обратный клапан для гравитационных систем VT.202 (рис. 9), который скоро появится в ассортименте VALTEC. Поплавок клапана в режиме естественной циркуляции открыт и не мешает движению теплоносителя. При включении насоса на байпасе клапан перекрывает главный стояк, направляя весь поток через байпас с насосом.

    Рис. 9. Установка поплавкового нормально отрытого обратного клапана

    Водяные системы отопления с естественной циркуляцией окутаны еще многими мифами, которые предлагаем вам развеять самостоятельно:

    • расширительный бак можно врезать только над главным стояком;
    • в таких системах нельзя ставить мембранный расширительныйбак;
    • регулировать тепловой поток от радиаторов в гравитационных системах нельзя;
    • естественная циркуляция не работает в межсезонье;
    • байпасы перед радиаторами в таких системах недопустимы;
    • водяные теплые полы в гравитационных системах работать не будут.

    Температура на выходе из котла – 90 °С, на входе в котел – 70 °C. Действующее циркуляционное давление для радиатора второго яруса можно определить поформуле:

    Циркуляция теплоносителя в системе отопления

    Циркуляция теплоносителя в системе отопления.
    Самым важным элементом системы с принудительной циркуляцией является насос, который заставляет двигаться (циркулировать) теплоноситель. Эти насосы так и называются – циркуляционные. Мощность насоса должна быть достаточной для преодоления сопротивления (трения) в трубе. Чем труба толще, тем меньше сопротивление и меньшая мощность насоса нужна. Но толстые трубы неудобны, некрасивы в комнатах и существенно дороже. В результате обычно соблюдают разумный баланс между диаметром труб и мощностью насоса. Существуют точные расчеты для соблюдения соответствия между диаметром трубы, качеством и стоимостью отопительной системы. Практически же для бытовых систем отопления подходят всего 2-3 типа компактных циркуляционных насосов.

    Что делает насос в системе отопления с принудительной циркуляцией?
    Насос побуждает двигаться воду (теплоноситель) в системе отопления, преодолевая сопротивление в трубе. Он не должен рассчитываться из условия поднятия воды на высоту здания (самое распространенное заблуждение!). Сколько горячей воды в системе отопления поднялось, столько же холодной опустилось.

    Система отопления всегда замкнута, теплоноситель движется по кругу. Попробуем привести пример. Если перевернуть велосипед и хорошенько крутануть колесо, оно может крутиться очень долго, если оно установлено на хорошем подшипнике. Его остановит только трение в подшипнике. В каждый момент времени у любого поднимающегося кусочка колеса есть симметричный уравновешивающий кусочек, опускающийся с противоположной стороны.

    Вода в замкнутой системе отопления подобна такому колесу. Насос преодолевает только трение, и вода движется по кругу. Именно поэтому циркуляционные насосы для частного дома (т.е. для бытовых систем отопления) имеют небольшую мощность, и, следовательно, низкое электропотребление – около 100 ватт, как лампочка. Если насос выключить, то вода через какое-то время, как и вращающееся колесо, остановится, а если не выключать, то вода будет двигаться постоянно. На этом основана возможность управления подачей тепла от котла в радиаторы дома. Насос может быть включенным на полную мощность, либо быть выключенным, либо работать вполсилы.

    Насосы немецких фирм Grundfos и Wilo, в основном используемые при монтаже бытовых систем отопления, имеют три ступени мощности. Это позволяет даже при отсутствии дополнительной автоматики управлять системой. Если в доме жарко, а насос работает в полную силу, можно уменьшить мощность насоса, поток теплоносителя в системе станет меньше, температура на отопительных приборах понизится. Можно подключить насос к электролинии через термодатчик. Насос в этом случае будет автоматически включаться только тогда, когда температура в доме опустилась ниже желаемой. Такой датчик называют еще термостатом.


    Устройство циркуляционного насоса


    Как устроен и как монтируется циркуляционный насос?

    Циркуляционный насос состоит из чугунного корпуса, внутри которого расположен ротор (вращающаяся часть) и насаженная на ротор крыльчатка. Ротор вращается – крыльчатка продвигает воду. Одно из основных правил монтажа насоса в системе: ось вращения ротора обязательно должна быть расположена горизонтально.
    При правильном монтаже циркуляционные насосы практически бесшумны. Вы сможете определить, работает ли насос, только по легкой вибрации, когда дотронетесь до него рукой.


    Системы с естественной циркуляцией

    Что такое система с естественной циркуляцией?
    В системе с естественной циркуляцией насоса нет. Роль насоса в ней выполняет сила, возникающая за счет разности плотности (веса) теплоносителя в подающей и обратной трубах. Как это происходит? Теплоноситель (например, вода) в котле нагревается. Плотность горячей воды меньше, т.е. она легче, чем холодная, и движется вверх по одной толстой трубе (подающему стояку). Затем горячая вода растекается по нескольким нисходящим трубам (обратным стоякам), “пронизывающим” здание, к отопительным приборам сверху вниз, и охлаждается, отдавая тепло. Плотность холодной воды увеличивается, вода тяжелеет и возвращается к котлу по обратному трубопроводу.
    Циркуляция в такой системе возникает за счет разницы веса горячего теплоносителя в подающем стояке и холодного – после остывания в приборах и обратном трубопроводе. Чем больше диаметр вертикальных стояков, тем больше побудительная сила естественной циркуляции. При движении и вверх, и вниз вода преодолевает сопротивление в трубе (трение). Чем толще труба, тем меньше сопротивление. Труба толще – сопротивление меньше.

    Что предпочесть?

    Какая система лучше, с принудительной или естественной циркуляцией?

    Выбирать Вам.
    Система с принудительной циркуляцией более комфортна, теплом в такой системе можно управлять. Вы можете установить нужную вам температуру в каждой комнате, и она будет автоматически поддерживаться. Качество такой системы выше. Есть возможность скрыть все трубопроводы в пол или стены. Но эта система требует наличия электричества (или того, чтобы электричество не выключалось более чем на сутки.)
    Система с естественной циркуляцией не поддается автоматическому регулированию, она “съедает” больше топлива и требует монтажа труб большого диаметра, которые несколько дороже и не очень эстетичны в интерьере. Регулировать такую систему можно обычно только вручную: пригасить горелку в котле, если в комнатах жарко, а когда станет холодно, снова увеличить огонь.
    Если Вы хотите чаще общаться с Вашим котлом или Вас устраивает постоянный перегрев воздуха в комнатах или в Вашем доме очень часто и надолго выключается электричество, система с естественной циркуляцией – для Вас. Если же Вы предпочитаете удобное и комфортное отопление, выбирайте систему с принудительной циркуляцией.

    Система отопления всегда замкнута, теплоноситель движется по кругу. Попробуем привести пример. Если перевернуть велосипед и хорошенько крутануть колесо, оно может крутиться очень долго, если оно установлено на хорошем подшипнике. Его остановит только трение в подшипнике. В каждый момент времени у любого поднимающегося кусочка колеса есть симметричный уравновешивающий кусочек, опускающийся с противоположной стороны.

    Закрытая и открытая

    Открытая система отопления с естественной циркуляцией на данный момент считается самым популярным видом. Схему работы этой коммуникации мы описывали выше. Из котла нагретый теплоноситель попадает в трубы, при нагревании он расширяется, что способствует движению холодной жидкости по системе к отопительному прибору.

    Читайте также:  Чугунные ванны. Преимущества чугуна и рекомендации по выбору ванны

    Одним из основных приборов, используемых в данной схеме, считается расширительный бак. Во время расширения излишки жидкости собираются именно в этой ёмкости. Верхняя часть такого резервуара открытая, что способствует испарению нагретой воды, поэтому в процессе работы отопления жидкость необходимо постоянно доливать. В открытой системе не предусмотрен циркуляционный насос. Её схема состоит из следующих приборов:

    • Котёл;
    • Трубопровод;
    • Отопительные приборы (радиаторы);
    • Расширительный бачок.

    Теперь ознакомимся с отопительной системой закрытого типа. Подобные трубопроводы герметичны, перемещение теплоносителя здесь происходит с использованием циркуляционного насоса. Перечень основных приборов тот же, но расширительный бачок в данном случае выполнен в виде герметичного резервуара со специальной мембраной для регулирования давления. Кроме этого в закрытой отопительной системе присутствует циркуляционный насос, что позволяет подводить к потребителям равномерно прогретый теплоноситель.

    Многие из владельцев загородной недвижимости пытаются понять, какая из отопительных систем лучше. Разница между этими двумя видами заключается в следующих деталях:

    • В открытой системе расширительный бачок монтируется наверху, в закрытой системе этот прибор может устанавливаться на любом участке контура;
    • В закрытую систему не попадает атмосферный воздух, её работа происходит при определённом давлении. В таком случае становится минимальной возможность возникновения воздушных пробок, что повлияет на продолжительность эксплуатации отопления;
    • Для монтажа отопительной системы открытого типа используются металлические трубы большого диаметра, причём весь контур должен выставляться под определённым уклоном. Большие трубы не всегда вписываются в дизайн помещений.
    • Закрытая система отопления не нуждается в устройстве труб большого диаметра, здесь нет необходимости соблюдать 1%-й уклон, да и стоимость контура окажется намного дешевле аналога открытого типа. При правильной установке циркуляционный насос не создаст много шума.


    Как утверждают эксперты, простота устройства отопительной системы считается залогом её надёжности. Это можно сказать и о «Ленинградке». Подобная схема может применяться для отопления частного дома с естественной циркуляцией. Оптимальным вариантом считается использование ленинградки в одноэтажных зданиях, хотя при правильном расчёте диаметров труб её можно установить и в двухэтажном жилом доме.

    Однотрубная система: как регулировать температуру?

    Однотрубная система отопления имеет только один вариант исполнения разводки – верхнюю. В ней нет обратного стояка, поэтому охлаждённый в батареях теплоноситель возвращается в подающую магистраль. Движение жидкости обеспечивается разностью температур жидкости в нижних и верхних радиаторах.

    Чтобы обеспечить одинаковый температурный режим в помещениях на разных этажах, поверхность нагревательных приборов на первом этаже должна быть несколько больше, чем на втором и последующих. В нижние радиаторы поступает смесь горячей и охлаждённой в верхних теплообменниках воды.

    В однотрубной системе может быть два варианта движения теплоносителя: в первом одна часть идёт в радиатор, другая – дальше по стояку к нижним приборам.

    При параллельной однотрубной разводке теплообменники на верхних этажах получают горячую воду, а самые нижние – уже остывшую. Поэтому площадь последних должна быть увеличена, чтобы уравнять обогрев всех помещений

    Во втором случае весь объём воды проходит через каждый теплообменник, начиная с самых верхних. Главная особенность такой разводки состоит в том, что радиатора на первом и цокольном этажах получают только охлаждённую воду.

    При проточном варианте однотрубной разводки нельзя отключить или ограничить поступление теплоносителя в отдельный радиатор. Перекрытие одного из них привело бы к остановке циркуляции во всей системе

    И если в первом случае регулировать температуру в помещениях можно с помощью кранов, то во втором их нельзя применять, так как это приведёт к уменьшению подачи жидкости ко всем последующим теплообменникам. К тому же полное перекрытие крана означало бы остановку циркуляции воды в системе.

    При монтаже однотрубной системы лучше остановиться на разводке, которая даёт возможность регулировки подачи воды к каждому радиатору. Это позволит регулировать температуру в отдельных помещениях и, естественно, делает отопительную систему более гибкой, а значит и более эффективной.

    Так как однотрубная разводка может быть только верхней, её монтаж возможен только в постройках с чердачным помещением. Именно там должен размещаться подающий трубопровод. Главный недостаток заключается в том, что пуск отопления возможен только по всему зданию сразу. Преимущества у системы, конечно, тоже есть. Главные из них – простой монтаж и меньшая стоимость. С точки зрения эстетики, чем меньше труб, тем проще их спрятать.

    Так как однотрубная разводка может быть только верхней, её монтаж возможен только в постройках с чердачным помещением. Именно там должен размещаться подающий трубопровод. Главный недостаток заключается в том, что пуск отопления возможен только по всему зданию сразу. Преимущества у системы, конечно, тоже есть. Главные из них – простой монтаж и меньшая стоимость. С точки зрения эстетики, чем меньше труб, тем проще их спрятать.

    Основы гидравлики систем отопления

    Отопительный контур без смешения (прямой)

    Если в отопительном контуре начальная температура теплоносителя прямо зависит от температуры подачи отопительного оборудования, то такой контур носит название отопительного контура без смесителя или «Прямой контур». Циркуляцию теплоносителя в отопительном контуре обеспечивает встроенный в отопительный котел циркуляционный насос или отдельный насос устанавливаемый на отопительный контур.

    Прямой контур системы отопления

    Отопительный контур со смесителем

    Для изменения температуры теплоносителя в отопительном контуре относительно температуры теплоносителя в остальной системе отопления необходим отопительный контур со смесителем. Задачей смесителя является уменьшение температуры подачи с целью достижения постоянного тока тепла в отопительном контуре как при полной, так и при частичной нагрузке.

    Преимуществом контура со смесителем является : различие температуры систем между потребителем и производителем тепла, возможность создания нескольких отопительных контуров с различными профилями температур.

    Внимание ! В отопительной системе с разводкой отопления, где имеется разница давления между подачей и возвратом, рекомендовано устанавливать гидравлический отделитель. Насос отопительного контура создает давление в контуре отопления и на входе смесителя это давление негативно влияет на качество регулировки. Встроенный в отопительный котел насос (насос котла) и насос отопительного контура в этом случае соединены последовательно, по причине чего полностью нарушается регулирующая смеситель характерная кривая и увеличивается энергопотребление.

    Контур отопления со смешением

    Типовые схемы разводки систем отопления

    Выбор подходящего вида схемы отопления и горячего водоснабжения − одна из важнейших задач при создании системы отопления частного дома. Наиболее часто в домах используются схемы отопления с естественной или принудительной циркуляцией теплоносителя, которые, так же, делятся на однотрубную, двухтрубную или лучевую схему разводки труб.

    Схема с естественной циркуляцией

    При такой системе движение теплоносителя происходит за счет физического эффекта изменения плотности воды. Нагретая в котле вода имеет меньшую плотность и вытесняется из котла обратным током жидкости. Вытесненная горячая жидкость поднимается вверх по стояку и течет по горизонтальным магистралям, которые уложены с уклоном в 3-5º. Уклон магистралей обеспечивают движение жидкости самотеком. Схема отопления с естественной циркуляцией сложна для реализации и при этом она пригодна лиш для отопления лишь небольших домов − общая длина контура не может превышать 30 метров. В настоящее время данная схема построения систем отопления практически не применяется.

    Схема с естественной циркуляцией

    Схема отопления с принудительной циркуляцией.

    В системе с принудительной циркуляцией движение воды происходит за счет разности давлений между подающей и обратной линией создаваемой циркуляционным насосом. Схема с принудительной циркуляцией теплоносителя не имеет ограничений по применению. Однако, ее работоспособность зависит от насоса и подачи электропитания к нему.

    Однотрубная последовательная схема

    Схема аналогична схеме с естественной циркуляцией за исключением того, что движение теплоносителя не зависит от уклона трубы и происходит под действием насоса. Основным недостатком такой системы является невозможность регулировки температуры каждого радиатора в отдельности. Возникает проблема перегрева первого радиатора и недостаточная температура последнего. Схема применима только в случае замены старого котла, установленного на систему с естественной циркуляцией и не целесообразности изменения всей системы труб и радиаторов.

    последовательное соединение радиаторов

    Однотрубная схема

    В однотрубной системе нагретый теплоноситель обходит последовательно все приборы отопления, отдавая в каждом часть своей тепловой энергии. Эта схема является самой простой и дешевой для построения. На ее строительство уйдет наименьшее количество материалов и узлов. Но ее устройство определяет и ее недостатки: невозможность раздельного регулирования теплоотдачи для каждого обогревателя, понижение количества отдаваемого тепла по мере удаления от котла.

    Однотрубная система отопления

    Двухтрубная схема

    В двухтрубной схеме обогрева к каждой из батарей подходит две трубы − верхняя подающая, и нижняя- обратного тока. При этом для каждой батареи теплоотдачу можно регулировать отдельно, управляя расходом жидкости через нее. За несомненные достоинства такой системы приходится «платить» двойным комплектом проложенных по дому труб.

    Бвухтрубная система разводки

    Лучевая схема

    Лучевая схема отопления характерна тем, что через коллектор, к каждому радиатору протягивается своя пара труб для подающей и обратной линии. Эти трубы сходятся потом на гребенках непосредственно у нагревательного прибора. Возможная протяженность труб в такой системе значительно выше, чем даже в двухтрубной системе. Зато на трубах нет соединений. Для того, чтобы тепло распределялось по всем батареям равномерно, лучевую систему перед началом эксплуатации балансируют. Балансировка заключается в подстройке расхода жидкости по каждой петле. В настоящее время данная схема получила широкое распространение виду простоты создания и возможности регулировки.

    Лучевая схема разводки отопления

    ВИДЫ ТОПЛИВА

    Для современного дома доступно достаточно много разновидностей систем отопления по используемому виду топлива.
    Исторически самыми древними являются системы отопления на твердом топливе. Легкодоступные уголь или дрова обладают высокой удельной теплотой сгорания и удобны для хранения, а их сгорание в топке еще и услаждает зрение игрой огня. Но недостатком таких систем является их неспособность к автономной работе в течение долгого времени. Дрова или уголь надо подбрасывать в топку руками. Именно поэтому они в основном используются как дополнительный источник тепла в доме.
    Системы отопления на жидком топливе − солярке или топочном мазуте, избавлены от недостатков твердого топлива. Топливо может подаваться в котел автоматически. Система на таком топливе будет автономной и не потребует вмешательства человека в свою работу. Автономность такой системы ограничена только запасом топлива. Поэтому для больших домов, где расход топлива будет велик, использование такой системы может привести к существенным начальным расходам на установку топливного бака большой емкости.
    От расходов по организации хранилища топлива избавлены системы отопления на газе − магистральный газ поступает в дом извне и запасать его нет необходимости. К тому же газ еще и дешевле жидкого топлива. Есть также и газовые системы отопления, которые не подключены к газовой магистрали, а хранят необходимый запас газа в сжиженном виде в газгольдерах (газовых цистернах). Такие системы в нашей стране − скорее экзотика, чем обычное явление. Для безопасного использования системы отопления на газе требуют более тщательного монтажа, применения дополнительного оборудования и повышенных мер безопасности.
    Самой простой, безопасной и удобной для монтажа является система электрического отопления. Удобство и простота такой системы компенсируются дороговизной ее использования для отопления. Такая система также полностью зависима от внешнего источника электроэнергии: запасти электричество нельзя, а мощности независимого генератора вряд ли хватит для обогрева дома. Поэтому электрическое отопление чаще всего используется для помещений и зданий, где не надо поддерживать комнатную температуру круглый год и 24 часа в сутки.
    Существуют также комбинированные системы отопления, которые используют одновременно несколько видов топлива. Как правило, один вид топлива обеспечивает постоянный обогрев, а второй доступен ограниченное количество времени в сутки или в определенных климатических условиях. Примером второго вида топлива может быть как упомянутое ранее твердое топливо, так и такие экзотические источники тепловой энергии, как солнечные теплоустановки, ветряки, геотермальные нагреватели, а также тепловые воздушные насосы.

    Читайте также:  Современная кухня — полный гид по обустройству

    ТЕПЛОНОСИТЕЛЬ

    Системы отопления могут использовать разные среды для переноса тепла от нагревателя к месту, где эта среда отдаст тепло в обогреваемом помещении. Такая среда носит название теплоносителя. Самыми распространенными сейчас являются системы с жидким теплоносителем (водяное отопление). В качестве средства в них применяется вода или антифриз — смесь воды и этиленгликоля, которая имеет низкую температуру замерзания. Эти системы универсальны по типу применяемого топлива и могут решать задачу обогрева практически любого дома, поскольку имеют множество схем подключения, разнообразных по свойствам и стоимости монтажа.
    Также распространены электрические системы, где теплоносителем является электрический ток. Они просты в монтаже и эксплуатации и достаточно универсальны, но в качестве источника тепла используют только электроэнергию. Отсюда − высокие эксплуатационные расходы.
    Реже в частных домах встречаются системы с переносом тепла воздухом. В таких системах тепло поступает в помещение с нагретым воздухом, который попадает туда через систему воздуховодов. Такие системы эффективны для больших зданий и требуют прокладки воздуховодов с большим сечением. Поэтому чаще всего такие системы обогревают промышленные, офисные и административные здания.
    Ну и, в качестве устаревших и практически не применяющихся систем можно упомянуть системы, где теплоносителем служит твердый материал. Самый наглядный пример − кирпичная или металлическая печь.

    ОДНОКОНТУРНЫЕ И МНОГОКОНТУРНЫЕ СИСТЕМЫ

    Контур — это замкнутый или незамкнутый маршрут, по которому движется теплоноситель, передавая энергию от нагревателя к потребителю тепловой энергии.
    Одноконтурная система отопления имеет всего один контур, и к нему подключены все батареи, радиаторы, конвекторы и все прочие приборы, которые отдают тепло в окружающую среду. В многоконтурной системе отопления таких контуров может быть два, три, или больше. При этом один контур может использоваться для отопления, а остальные − для других нужд, например для нагрева воды в системе водоснабжения или нагрева теплого пола с жидким теплоносителем, подачи тепла в оранжерею или зимний сад, и тому подобное.

    В многоконтурной системе отопления таких контуров может быть два, три, или больше. При этом один контур может использоваться для отопления, а остальные − для других нужд, например для нагрева воды в системе водоснабжения или нагрева теплого пола с жидким теплоносителем, подачи тепла в оранжерею или зимний сад, и тому подобное.

    Схема аналогична схеме с естественной циркуляцией за исключением того, что движение теплоносителя не зависит от уклона трубы и происходит под действием насоса. Основным недостатком такой системы является невозможность регулировки температуры каждого радиатора в отдельности. Возникает проблема перегрева первого радиатора и недостаточная температура последнего. Схема применима только в случае замены старого котла, установленного на систему с естественной циркуляцией и не целесообразности изменения всей системы труб и радиаторов.

    Циркуляция теплоносителя в комбинированной (разветвлённой) системе отопления

    Начнём разбор циркуляции теплоносителя со сложной системы – тогда с простыми схемами вы разберётесь без проблем.

    Вот схема такой системы отопления:

    В ней три контура:

    1) котёл – радиаторы – котёл;

    2) котёл – коллектор – водяной тёплый пол – котёл;

    3) котёл – бойлер косвенного нагрева – котёл.

    Во-первых, обязательно наличие циркуляционных насосов (Н) для каждого контура. Но этого мало.

    Чтобы система работала, как мы того хотим: бойлер отдельно, радиаторы – отдельно, нужны обратные клапаны (К):

    Без обратных клапанов, допустим, мы включили бойлер, однако и радиаторы «ни с того, ни с сего» начали греться (а на дворе лето, нам всего-то нужна была горячая вода в водопроводе). Причина? Теплоноситель пошёл не только в контур бойлера, который нам сейчас нужен, а и в контуры радиаторов. А всё потому, что мы сэкономили на обратных клапанах, которые не пропустили бы теплоноситель, куда не надо, а позволили бы каждому контуру работать, независимо от других.

    Даже если у нас система без бойлеров и не комбинированная (радиаторы + водяной тёплый пол), а «только» разветвлённая с несколькими насосами, то и тогда на каждую ветку ставим обратные клапаны, цена которых однозначно меньше, чем переделка системы.

    С помощью фильтра поймать грязь проще, чем исправлять последствия засорения трубопровода или теплообменников котла.

    Закрытые системы отопления с искусственной циркуляцией

    В закрытых системах отопления движение воды происходит за счет работы циркуляционных насосов. Такая система не контактирует с открытым воздухом. Но в любой водяной системе, а тем более в системе, где происходит нагревание, и охлаждение жидкости присутствует разность давлений. Для регулирования давления в системе на стороне обратного (охлажденного) теплоносителя устанавливается расширительный бак (Экспансомат-схема ниже).

    12. Магистраль горячего водоснабжения (ГВС);

    Принцип построения отопительной системы с естественной циркуляцией

    Самотечная система отопления частного дома состоит из таких элементов:

    • котел. Именно он осуществляет нагрев теплоносителя. Существует большое количество видов котлов, которые работают на различного типа топливе.
    • трубопровод. Он может быть как одинарным, так и двойным (для обратного тока).
    • отопительные элементы – радиаторы.
    • расширительный бак.

    При проектировании и монтаже такой схемы, как самотечная система отопления, крайне важно придерживаться обязательного требования – труба, по которой движется теплоноситель, непременно должна иметь уклон.

    Он должен составлять минимум 0,005 м на метр погонный трубы и быть направленным в сторону нагревающего бака. То есть, если радиатор и котел расположены на одном этаже, то уровень входа трубы в радиатор должен быть несколько выше. Необходимость наличия уклона объясняется несколькими факторами:

    • по трубе, которая имеет уклон, холодная вода значительно быстрее движется к нагревательному баку.
    • наличие уклона крайне важно для того чтобы пузырьки воздуха, появившиеся в процессе нагревания теплоносителя, эффективнее поднимались в специальный расширительный бак, а оттуда – удалялись в атмосферу.

    Наличие расширительного бака в такой системе, как гравитационная система отопления из полипропилена, благотворно влияет на создание дополнительного давления в системе, что делает скорость передвижения теплоносителя несколько выше.

    Следует отметить, что скорость перемещения теплоносителя в трубе напрямую зависит сразу от нескольких факторов. Прежде всего, это разница таких величин, как плотность, масса, объем теплоносителя в горячем и холодном состоянии.

    Помимо этого, на скорость перемещения теплоносителя влияет также и уровень расположения отопительных элементов (радиаторов) относительно нагревательного котла. Однако гравитационное давление, возникающее во время перемещения теплоносителя, в некоторой степени расходуется в момент, когда жидкость преодолевает сопротивление трубопровода.

    Дополнительными препятствиями, на которые также расходуется значительное количество гравитационного давления, являются дополнительные радиаторы, разветвления, повороты, присутствующие в системе. Для более эффективного обогрева (и достижения максимальной скорости перемещения теплоносителя) следует проектировать отопление с естественной циркуляцией так, чтобы подобных препятствий было меньше. В случае если подобная «сложность» системы вызвана необходимостью, решением возникшей сложности является использование труб большего диаметра.

    Планируя естественное отопление дома, следует учитывать некоторые особенности. Прежде всего, труба основного стояка непременно должна быть утеплена – иначе существует вероятность существенной потери тепла.

    Нет циркуляции в системе отопления – в чём причины?

    Если нет циркуляции теплоносителя в системе отопления, то ни о каком комфортном житие-бытие в доме зимой и говорить нечего. Потому что, сколь котёл ни «раскочегаривай», а радиаторы всё равно будут холодными. Однако думать об этом нужно не тогда, когда система «работала, работала и вдруг перестала», а ещё на стадии проектирования, т. е. сейчас. В этой статье разберёмся с проблемами, приводящими к плохой циркуляции теплоносителя.

    Циркуляции теплоносителя в системе отопления может не быть по следующим причинам:

    Расчет характеристик насоса

    Отопление работает эффективно, когда все батареи или греющие напольные контуры получают необходимое количество тепла. То есть, насосная установка должна обеспечивать требуемый расход теплоносителя на каждом участке системы, преодолевая гидравлическое сопротивление труб, фитингов и арматуры.

    Перед тем как выбрать насос, нужно рассчитать его производительность по формуле:

    • G – массовый расход теплоносителя, кг/ч;
    • Q – общая нагрузка на отопление, Вт;
    • Δt – разность между температурой воды в подающей и обратной линии, при расчетах обычно принимается равной 20 °С.

    Справка. Поскольку плотность воды мало изменяется при нагреве в пределах 100 градусов, в упрощенных вычислениях массовый расход принимается равным объемному. Пример: G = 300 кг/ч = 300 литров в час.

    Тепловую нагрузку можно высчитать скрупулезно, пользуясь методикой СНиП. Здесь мы не станем усложнять задачу и просто возьмем количество теплоты по площади.

    Например, на обогрев двухэтажного дома квадратурой 200 м², расположенного в средней полосе, понадобится 22 кВт теплоты. Отсюда несложно посчитать расход теплоносителя и требуемую производительность насоса: G = 0.86 х 22000 / 20 = 946 кг/ч = 0.95 т/ч = 0.95 м³/ч.

    Сразу предлагается выяснить сечение и диаметр основной магистрали, идущей от котла, куда планируется установить насос:

    • F – площадь поперечника трубы, м²;
    • ʋ — скорость движения воды, принимается 0.5…1 м/с.

    Чем ниже скорость течения воды, тем меньше сопротивление трению о стенки труб, арматуры и фитингов.

    Берем значение 0.6 м/с и определяем сечение магистрали: F = 0.95 / 3600 х 0.6 = 0.00044 м². Дальше через формулу площади круга рассчитываем диаметр прохода – 0.024 м или 24 мм. Соответственно, внутренний размер трубы и присоединительных штуцеров насоса равен 25 мм.

    Выяснив необходимую производительность перекачивающего устройства, переходим к вычислению располагаемого давления. Расчеты проведем отдельно для радиаторной сети, напольного обогрева и котлового контура обвязки.

    • F – площадь поперечника трубы, м²;
    • ʋ — скорость движения воды, принимается 0.5…1 м/с.

    Что это такое?

    Система отопления представляет собой замкнутый контур, основой которого является нагревательный котел. Он подключается в разрыв отопительного контура. Из котла выходит нагретый теплоноситель (прямая линия), проходит по кругу, отдавая тепловую энергию, и возвращается обратно в котел (обратная линия или обратка). Скорость движения воды в системе определяет эффективность ее работы и расход топлива на нагрев. Чем активнее движется теплоноситель, тем меньше он остывает. Это дает возможность снизить подачу топлива.

    Если скорость перемещения низка, в систему устанавливают циркуляционный насос. Он создает напор, толкающий воду в необходимом направлении с заданными параметрами. Циркуляция жидкости стабилизируется, становится равномерной и регулируемой. Необходимо учесть, что большинство современных отопительных котлов оснащено собственными циркуляционными насосами. Однако, их мощности часто недостаточно, особенно при сложной, разветвленной конфигурации радиаторного контура. Многие пользователи от одного нагревателя питают не только радиаторную систему, но и теплый пол, что также создает заметное сопротивление и требует дополнительных мощностей.


    Основные технические характеристики циркуляционных насосов:

    Недостатки
    • шумная работа.

    В целом домовладельцы довольны надежностью, доступностью и долговечностью помпы. Обойти лидера рейтинга изделию не удалось из-за сильного шума на максимальных оборотах и некачественного пластика.

    Добавить комментарий