Что такое почвенное плодородие. Плодородие – что такое? Что такое плодородие почвы?

Искусственное

Подобным свойством наделяют землю в ходе целенаправленного воздействия – аграрии улучшают плодородие почвы посредством таких приемов окультуривания, как введение удобрений, обработка, мелиорация. Искусственные свойства приобретаются наряду с естественными с тех пор, как целинный участок становится элементом севооборота, вовлекается в средства производства и выдает продукты труда. В чистом виде это явление характерно для создания субстратов, предназначенных для выращивания культур в парниках, теплицах.

Искусственное плодородие почвы

  • уровень присутствия гумуса – основного источника энергии и пищи для выращиваемых культур. Чем больше гумуса, тем выше физико-химические характеристики земли;
  • активность почвенных микроорганизмов, отвечающих за образование оптимальной структуры пахотного земляного слоя – комковатой и прочной. В таком случае образуются благоприятные водно-воздушные условия для растений;
  • присутствие органических компонентов – они отвечают за стабильное полноценное азотное питание культур, обеспечивают равномерное распределение полезных макроэлементов и влаги. Органические вещества образуются из подземных и надземных растительных остатков, по мере убывания эффективности в этом смысле приводятся многолетние травы, зернобобовые и зерновые однолетние, пропашные многолетние культуры;
  • степень очистки почвы от болезнетворных организмов, семян, вредителей, частей растений, отвечающих за вегетативное размножение.

Что такое плодородие почвы

Плодородие почвы – это способность земли удовлетворять нужды культур в плане питательных веществ, воды, воздуха, тепла. Кроме того, это способность земли быть для корневой системы растений благоприятной физико-химической средой. От плодородности земли зависит развитие растений, их урожайность, внешний вид.

Для определения плодородие почвы нужно снять образцы земли и изучить их в лаборатории

Определить плодородие почвы в домашних условиях невозможно. Хотя многие огородники определяют этот показатель по урожайности растений, их развитию. Но это лишь примерные данные, без точных цифр.

Чтобы понять в каком состоянии земля, делается исследование. Необходимо снять образцы земли, изучить их в лаборатории и только после этого будет понятно, в каком состоянии находится грунт. Такое обследование позволяет не только получить развернутый отчет о составе земли и содержании питательных веществ, но и понять, какую дозировку удобрений минеральных и органических необходимо вносить, стоит ли регулировать кислотность, а также какие еще процедуры по восстановлению грунта требуются.

    Естественное плодородие почвы присуще целинному грунту, который не подвергается вмешательству человека. Рассчитывается такое плодородие количеством растительной массы, которая вырастает на определенной площади такой земли за год.

Что такое почвенное плодородие. Плодородие – что такое? Что такое плодородие почвы?

Почва представляет собой основное средство и предмет сельскохозяйственного производства. Важнейшее объективное свойство почвы – ее плодородие, под которым понимается способность почвы к одновременному обеспечению растений необходимыми условиями для их роста и развития.

Различают следующие виды плодородия:

  • естественное (природное),
  • искусственное,
  • потенциальное,
  • эффективное,
  • экономическое.

Естественное (природное) плодородие – это плодородие, которым обладает почва (ландшафт) в естественном состоянии. Оно характеризуется продуктивностью естественных фитоценозов.

Искусственное плодородие (естественно-антропогенное) – плодородие, которым обладает почва (агроландшафт) в результате хозяйственной деятельности человека. По многим показателям оно наследует естественное. В чистом виде – характерно для тепличных грунтов, рекультивированных (насыпных) почв.

Почва обладает определенными запасами элементов питания (запасной фонд), которые реализуются при создании урожая растений путем частичного его расхода (обменный фонд). Из этого представления вытекает понятие о потенциальном плодородии.

Потенциальное плодородие – способность почв (ландшафтов и агроландшафтов) обеспечивать определенный урожай или продуктивность естественных ценозов. Эта способность не всегда реализуется, что может быть связано с погодными условиями, хозяйственной деятельностью. Характеризуется потенциальное плодородие составом, свойствами и режимами почв. Например, высоким потенциальным плодородием обладают черноземные почвы, низким – подзолистые, однако в засушливые годы урожайность культур на черноземах может быть ниже, чем на подзолистых почвах.

Эффективное плодородие – часть потенциального, реализуемая в урожае сельскохозяйственных культур при определенных климатических (погодных) и агротехнических условиях. Эффективное плодородие измеряется урожаем и зависит как от свойств почв, ландшафта, так и от хозяйственной деятельности человека, вида и сорта выращиваемых культур.

Экономическое плодородие – это эффективное плодородие, измеряемое в экономических показателях, учитывающих стоимость урожая и затраты на его получение.

Плодородие почвы зависит не только от ее свойства, но также:

  • от возделываемой на ней культуры,
  • от уровня агротехники,
  • климата зоны и т.п.

Развитие почв и почвенного покрова, как и формирование их плодородия, тесно связано с конкретным сочетанием природных факторов почвообразования многообразным влиянием человеческого общества, с развитием его производственных сил, экономических и социальных условий.

Обладая свойством плодородия, почва выступает как основное средство производства в сельском хозяйстве. Используя почву как средство производства, человек существенно изменяет почвообразование, влияя как непосредственно на:

  • свойство почвы,
  • ее режимы и плодородие,
  • природные факторы, определяющие почвообразование.

Наряду с понятием «плодородие почвы» в агрономии широко используют термин «окультуривание почвы». Под окультуриванием понимают улучшение природных свойств почвы посредством применения агромелиоративных мероприятий. Наряду с этим выделяют понятие «окультуривание поля», связанное с культуртехническим воздействием на пахотные земли, увеличением размера контуров поля, выравниванием, удалением камней и т.д. с целью создания благоприятных условий для работы сельскохозяйственной техники.

Посадка и вырубка лесов, возделывание сельскохозяйственных культур изменяют облик естественной растительности; осушение и орошение меняют режим увлажнения и т.п. Не менее резкие воздействия на почву вызывают приемы ее обработки, применение удобрений и средств химической мелиорации (известкование, гипсование).

Важное условие плодородия почв – отсутствие в почве избыточного количества легкорастворимых солей, главным образом, хлоридов и сульфатов натрия и отчасти магния, кальция и других катионов. Для устранения избытка солей применяют промывание почвы и для предупреждения накопления солей – правильный поливной режим, дренаж и др.

Читайте также:  Уютный дизайн спальни 16 кв. м: фото, советы, способы зонирования

Плодородие почвы сильно снижается при накоплении в ней вредных химических соединений (закислых соединений железа, подвижных соединений алюминия), накапливающихся обычно в условиях застойного переувлажнения. Регулирование запасов влаги в почве достигается с помощью сыротехнических и гидротехнических мероприятий (зяблевая вспашка, снегозадержания, ранневесеннее борование, междурядная обработка посевов, орошение, осушение и др…).

Наиболее высоким и эффективным плодородием почвы характеризуется почвы, которые наряду с достаточным количеством влаги имеют хорошую аэрацию. А так же при правильном использовании почв их плодородие не только не снижается, но и постоянно увеличивается.

Воспроизводство плодородия почвы бывает:

  • простое,
  • расширенное.

Возвращение почвенного плодородия к исходному первоначальному состоянию означает простое воспроизводство. Создание почвенного плодородия выше исходного уровня – это расширенное воспроизводство плодородия. Простое воспроизводство применимо для почв с оптимальным уровнем плодородия. Расширенное воспроизводство реализуется для почв с низким естественным уровнем плодородия, не способным обеспечить достаточную эффективность факторов интенсификации земледелия. Расширенное воспроизводство плодородия дерново-подзолистых почв – обязательное условие расширенного воспроизводства продукции земледелия вообще.

Посадка и вырубка лесов, возделывание сельскохозяйственных культур изменяют облик естественной растительности; осушение и орошение меняют режим увлажнения и т.п. Не менее резкие воздействия на почву вызывают приемы ее обработки, применение удобрений и средств химической мелиорации (известкование, гипсование).

Оценка плодородия

Задумывались ли вы, отчего зависит плодородие почв? На самом деле от количества гумуса, которое находится в ней. Чем больше гумуса, тем плодороднее почва. Именно он делает грунт рыхлым, способным хорошо впитывать влагу и обладать отличной проницаемостью воздуха. Гумус получается как следствие деятельности микроорганизмов, которые соединяют частицы почвы с органическими веществами, а в итоге образуются комочки. Получается, что есть богатые, средние или бедные гумусом грунты.

Оценка плодородия почв производится исходя из того, какие растения на ней произрастают. Как правило, чистых почв не встречается, по большей части они смешанные.

Для бедной почвы характерно наличие таких растений, как:

  • брусника;
  • пашенный клевер;
  • малый щавель;
  • черника.


Средние почвы:

  • лютичная ветреница;
  • подмаренник настоящий;
  • болотная калужница;
  • клевер средний.

Богатые почвы:

  • крапива;
  • малина;
  • хмель;
  • таволга.

Более того, потом происходит «травля» почвы химическими веществами в виде различных ненатуральных удобрений.

Окислительный пиролиз

Этот вид пиролиза можно назвать самым экологичным и продуктивным. Он применяется для обработки вторсырья. Реакция проходит при высоких температурах. Например, при пиролизе метана, он смешивается с кислородом, частичное сгорание вещества выделяет энергию, которая нагревает оставшееся сырье до температуры 16000 ºС.

Окислительный пиролиз используют для того, чтобы обезвредить промышленные отходы с повышенным содержанием нефти. А также для переработки пластика, резины и других материалов, не поддающихся естественному разложению в природной среде.

«Окислительный пиролиз позволяет перерабатывать сырье различных консистенций. В том числе материалов в жидком и газообразном состоянии».

Промышленное значение имеет в основном пиролиз нефтяного и газового сырья. Применяется также пиролиз твёрдых топлив (древесины, каменных и бурых углей, торфа, сланца).

Продукты пиролиза каменного угля

Итак, в самом начале своей статьи мы упоминали о том, что путем пиролиза из каменного угля можно получить продукты следующих типов:

  • Твердые
  • Жидкие
  • Газообразные

Теперь рассмотрим каждую разновидность продуктов пиролиза подробнее.

При пиролизе каменного угля получают твердый кокс, который сегодня используется в основном в таких отраслях как черная и цветная металлургия. Кокс является более совершенным твердым топливом, чем каменный уголь, поэтому именно его используют для выплавки металлов.

Однако кокс, хотя он и является основным продуктом пиролиза каменного угля, это далеко не самое ценное, что можно извлечь из этого природного ископаемого. Побочным продуктом данного процесса является парогазовая смесь, которая содержит множество химических соединений. Данную смесь путем конденсации разделяют на жидкую и газообразную составляющую, из которых, в свою очередь, можно получить более чем 250 химических соединений.

Основным жидким продуктом пиролиза каменного угля является каменноугольная смола — черный жидкий продукт, представляющий собой сложную смесь органических соединений. Из каменноугольной смолы путем дальнейшей переработки получают такие вещества как:

  • Фенолы
  • Нафталин
  • Антрацен
  • Различные гетероциклические соединения
  • Технические масла
  • Синтетическое топливо

Однако стоит отметить тот факт, что получаемые путем пиролиза каменного угля масла и жидкое топливо являются непригодными для использования в двигателях внутреннего сгорания, поскольку они содержат в своем составе много примесей. По этой причине данные продукты пиролиза для дальнейшего использования нуждаются в дополнительной очистке. А это существенно увеличивает себестоимость данных продуктов пиролиза, делая их производство не очень рентабельным.

Газообразным продуктом пиролиза каменного угля является так называемый пиролизный газ, представляющий собой смесь горючих газов и различных химических соединений. Во многих странах мира пиролизный газ сегодня используется как альтернативный источник энергии, в первую очередь, тепловой.

Если для нас эта технология достаточно новая, то в некоторых европейских странах пиролизный газ уже давно стал привычным топливом. Помимо этого, пиролизный газ также как и каменноугольную смолу можно использовать и для получения различных химических соединений. Так, из данного газа выделяют бензол, фенол и другие вещества.

  • Комментарии к статье

Как видно из этих данных, пиролизный газ содержит большое количество предельных и непредельных углеводородов, водорода и малое количество окиси углерода, кислорода и углекислоты.

Пиролиз – что это, описание процесса пиролиза

По сути пиролиз – это распад материи на молекулярном уровне. Разложение органических и неорганических тканей при этом происходит благодаря сильному нагреву и полному отсутствию кислорода. В итоге сложные соединения распадаются на более простые, образуя новые элементы. Поэтому довольно часто данный процесс называют сухой перегонкой.

Читайте также:  Современный двухэтажный дом: простая конфигурация и лёгкий интерьер House M

Зато в работе пиролизные установки практически автономны. Агрегатам требуется электроэнергия только для запуска, дальнейшая работа котла осуществляется за счет производимых в процессе сжигания ресурсов. При этом избытки вырабатываемой энергии и пара можно использовать для бытовых целей, перенаправляя их коммунальные сети.

Влияние повышенной влажности

Большое содержание влаги в исходном материале одинаково пагубно влияет на реакции горения и пиролиза. Рассмотрим процессы на примере сжигания древесины:

  1. При горении выделяемая энергия тратится на испарение воды, содержащейся в дровах. Количество теплоты на выходе существенно уменьшается, топливо сжигается впустую.
  2. Влага сильно замедляет термическое разложение вещества. Часть затрачиваемой на прогрев теплоты отнимает испаряющаяся вода, нужная температура (минимум 500 °C) не достигается. Пиролиз древесины, содержащей свыше 50% влаги, практически невозможен.

Лучший показатель влажности для плодотворного сжигания либо разложения древесины в газогенераторе – 8…15%. В домашних условиях нереально добиться таких показателей, длительная сушка дров под навесом позволяет достичь 20—25% влагосодержания.

Справка. При изготовлении топливных пеллет и брикетов на заводе древесные опилки высушиваются до показателя 8—10%. Максимальная влажность готовых гранул – 15%.


На бытовом уровне пиролиз помогает решить следующие задачи:

Сухой пиролиз и его разновидности

Утилизация кислых гудронов пиролизом

Метод преследует такие основные цели: обезвреживание вторичного сырья, получение топлива, различных химических соединений, используемых в промышленности. Главный сохраняемый принцип, которому следует сухой пиролиз, – рациональное использование невосполнимых природных ресурсов.

Способ позволяет получать пиролизный газ, жидкий продукт, твердые углеродистые компоненты. Сухой пиролиз может протекать при трех режимах температур:

  1. Низких.
  2. Средних.
  3. Высоких.

Пиролиз при Т 450-550 градусов по Цельсию относится к низкотемпературному. Методу характерно получение полукоксов в больших количествах, максимальная температура выхода пиролизного газа при образовании его в минимальных объемах. Также наблюдается получение смол, которые в дальнейшем используются для производства каучука. Образующиеся полукоксы применяют в качестве топлива для промышленных и бытовых нужд.

Среднетемпературный пиролиз происходит при 800 градусах по Цельсию. В ходе сжигания выделяется большое количество газа и гораздо меньше, жидких смол и непосредственно кокса, чем в предыдущем случае.

Высокотемпературный пиролиз протекает при Т выше 900 градусов по Цельсию. Этот метод дает минимальное количество твердых и жидких отходов. Образующиеся газы впоследствии используют, как топливо для транспортировки.

  1. Низких.
  2. Средних.
  3. Высоких.

Древесный крекинг

Издавна известна профессия углежогов, которые сжигали древесину без доступа воздуха под землёй и получали древесный уголь. При температуре в 500 0 происходит сухая возгонка, при которой получаются ценные продукты – ацетон, смола, уксусная кислота и метанол. При этом углерод остаётся в твёрдом состоянии и называется древесным углём. Такой продукт в дальнейшем используется как высококалорийное топливо или активатор химических процессов.

Начинается пиролиз при температуре в 200 градусов с выделения оксидов углерода. Необходимо отметить и то, что если продукты разложения в дальнейшем сжигать в атмосфере воздуха, то суммарная калорийность их сгорания будет гораздо выше, чем энергия, потраченная на пиролиз.

Химия древесины – наука, которая развивалась первоначально только в России и первые опыты крекинга принадлежат русским учёным.


При этом мусоросжигательный завод имеет разные режимы и установки, рассчитанные на тот или иной процесс.

Терминология

Пиролиз – это один из различных типов процессов химического разложения, которые происходят при более высоких температурах (выше точки кипения воды или других растворителей). Он отличается от других процессов, таких как горение и гидролиз, тем, что обычно не требует добавления других реагентов, таких как кислород (O 2 при горении) или вода (при гидролизе). При пиролизе образуются твердые частицы ( полукокс ), конденсируемые жидкости ( гудрон ) и неконденсирующиеся / постоянные газы.

Пиролиз обычно заключается в нагревании материала выше его температуры разложения , разрывая химические связи в его молекулах. Фрагменты обычно становятся более мелкими молекулами, но могут объединяться с образованием остатков с большей молекулярной массой, даже аморфных ковалентных твердых веществ .

Что такое пиролиз

Мало кто из домовладельцев хорошо понимает, что такое пиролиз и каким образом он происходит. Зато все наслышаны о пиролизных котлах, чьи невероятно высокие показатели нам неустанно рекламируют их производители и продавцы. Но рядовые пользователи уже стали привыкать к подобного рода рекламным кампаниям, сопровождающим практически любой товар, и относятся к ним с настороженностью. Цель данной статьи – объяснить, как на самом деле протекает процесс пиролиза, в каких сферах применяется, а также оценить его использование в твердотопливных котлах.


Мало кто из домовладельцев хорошо понимает, что такое пиролиз и каким образом он происходит. Зато все наслышаны о пиролизных котлах, чьи невероятно высокие показатели нам неустанно рекламируют их производители и продавцы. Но рядовые пользователи уже стали привыкать к подобного рода рекламным кампаниям, сопровождающим практически любой товар, и относятся к ним с настороженностью. Цель данной статьи – объяснить, как на самом деле протекает процесс пиролиза, в каких сферах применяется, а также оценить его использование в твердотопливных котлах.

Пиролиз – это. Виды пиролиза

Пиролиз – это химический процесс разложения вещества при нагревании. Данная реакция сопровождается разрывом внутримолекулярных связей. Она используется для получения новых веществ. В качестве исходного компонента выступает только одно вещество.

Читайте также:  Штукатурка декоративная Леонардо

Сухой пиролиз – процесс термического разложения без доступа кислорода. В зависимости от выбранного исходного компонента, данный процесс протекает при разных значениях температуры. Образующиеся в результате подобного превращения продукты реакции отличаются по составу, свойствам, сферам использования. В настоящее время выделяют следующие виды пиролиза:

Схема пиролиза

Главным элементом в любой пиролизной установке является реактор, состоящий из швельшахты и шахтной печи. В верхнюю часть данного реактора поступают твердые бытовые отходы, которые в процессе пиролиза спускаются ниже через швельшахту. В верхних слоях реактора происходит подсушивание сырья, которое поступает в реактор. Затем сырье под действием собственного веса продвигается в среднюю часть реактора, где и происходит непосредственно сам процесс пиролиза.

Здесь, в бескислородной среде, происходит коксование мусора и его термическое разложение. Для защиты атмосферного воздуха от загрязнения делается следующее – из пиролизного реактора дымовые газы проходят через котел-утилизатор, затем они направляются в распылительную сушилку и после этого попадают в абсорбер. После очистки дымовых газов в абсорбере суспензией известкового молока, отработанная суспензия отправляется в распылительную сушилку, а газы выбрасываются в атмосферу.

Во время данного процесса происходит высокоэффективное обезвреживание твердых бытовых отходов, которые затем попадают в нижнюю часть реактора, и выводятся наружу. Полученный в результате данного процесса шлам, представляющий собой смесь золы и солей, собирают в контейнеры и отправляют потребителю, либо направляют в специальный отвал для хранения. Продукты пиролиза являются абсолютно безопасными с экологической точки зрения и впоследствии могут быть использованы в качестве топлива или ценного сырья для промышленности и народного хозяйства.

  • Электрическую энергию
  • Тепловую энергия
  • Печное топливо (аналог мазута)
  • Синтез-газ
  • Жидкие топливные продукты (бензин, дизельное топливо)

ПИРОЛИЗ

(от греч. руr-огонь и lysis-разложение, распад) (термич. разложение, пирогенетич. превращение, сухая перегонка), разложение или др. превращения хим. соединений при нагревании.

Наиб. распространение термин “П.” получил в орг. химии для обозначения высокотемпературных деструктивных превращ. орг. соединений, сопровождающихся расщеплением соед. с образованием продуктов меньшей мол. массы (в т. ч. простых в-в), изомеризацией, полимеризацией или поликонденсацией исходных соед. и продуктов их превращения. С помощью П. в пром-сти получают топлива и масла (при термическом крекинге, висбрекинге, коксовании, полукоксовании )или сырье для нефтехим. синтеза (при П. нефтяного сырья, пиролизе древесины, деструкции орг. отходов).

О П. алифатич. углеводородов, входящих в состав нефти, и механизме р-ций см. Пиролиз нефтяного сырья. Ароматич. углеводороды термически более стабильны, чем алифатические (кроме CH4). Бензол при 700-750 0 C образует фенильные радикалы и далее ди-фенил. П. др. ароматич. углеводородов при 800-850 0 C приводит к смеси, состоящей из бензола, нафталина, антрацена, фенантрена и др. полициклич. ароматич. углеводородов.

Алифатич. спирты при 500-700 0 C подвергаются П. с выделением H2O и образованием олефинов (при более низких т-рах) или выделением H2 и образованием альдегидов (при более высоких). Третичные спирты подвергаются П. легче, чем вторичные и первичные. Фенолы стабильны до 800 0 C. Напр., фенол лишь при 850-900 0 C превращ. в смесь бензола, n-гидроксидифенила и дифенилового эфира (дифенилоксида).Продукты П. простых и сложных эфиров-преим. олефины. Этил-, пропил- и трет-бутил- ацетаты при 500, 450 и 350 0 C соотв. превращ. в уксусную к-ту и соответствующий олефин по нерадикальному механизму. П. метилацетата с образованием CH4, H2, СО протекает по радикальному механизму при т-рах выше 600 0 C. Продукты П. алифатич. альдегидов и кетонов-предельные и непредельные углеводороды, СО и H2. П. ацетона при т-рах выше 550 0 C-пром. способ получения кетена. Карбоновые к-т ы при П. при достаточно низких т-рах подвергаются преим. декарбоксилированию. Так, П. ацетоуксусной к-ты при 100 0 C приводит к ацетону, П. малоновой к-ты при 140 °С-к уксусной к-те. Строение продуктов П. в случае дикарбоновых к-т зависит от взаимного расположения карбоксильных групп; напр., янтарная к-та и ее гомологи образуют циклич. пятичленные ангидриды, глутаровая к-та и ее гомологи – шестичленные. П. солей орг. к-т обычно происходит при 300-500 0 C; используется для получения ряда орг. соединений. Напр., из формиата Na при П. (400 0 C) в пром-сти получают оксалат Na, из ацетатов Ca и Ba – ацетон. П. солей дикарбоновых к-т при 350-400 0 C-способ получения циклич. кетонов (р-ция Ружички). Осн. продукты П. алифатич. аминов-этиленовые углеводороды и нитрилы. При т-рах выше 700 0 C П. идет глубже с образованием предельных углеводородов, HCN и N2. П. галогенсодер-жащих соед. сопровождается выделением галогеноводо-родов и расщеплением связей СЧС и изомеризацией. Алкилгалогениды с несколькими атомами галогена превращ. в непредельные галогенсодержащие соед.; из три- и тетрахлорметанов образуются соотв. гекса-хлорбутадиен и тетрахлорэтилен. Ароматич. соед., содержащие атом галогена в цикле, устойчивы до 700 0 C. Галогенопроизводные бензола при П. образуют производные дифенила; напр., хлорбензол превращ. в 4,4-ди-хлордифенил.

Пром. применение находит также П. карбонилов металлов с образованием металлич. порошков, П. CaCO3 с образованием CaO, пирогидролиз нек-рых неорг. солей в оксиды и др.

Лит.: Жоров Ю. M., Кинетика промышленных органических реакций, M., 1989; Brown R. F., Pyrolytic methods in organic chemistry, N. Y., 1980, p. 440; Mc Craw-Hill encyclopedia of chemistry, N. Y., 1983, p. 14-15. См. также лит. при ст. Пиролиз нефтяного сырья. Ю. M. Жоров.

Пром. применение находит также П. карбонилов металлов с образованием металлич. порошков, П. CaCO3 с образованием CaO, пирогидролиз нек-рых неорг. солей в оксиды и др.

Добавить комментарий