Чем отличаются аналоговый сигнал от цифрового — примеры использования

Применение в различных областях

Также может быть представлена в виде схема цифровой модуляции, позволяющая передачу в полосе пропускания по длинным проводам или в ограниченной полосе радиочастот. Такая синусоида с модулированной несущей рассматривается как поток битов, который потом преобразуется в аналоговый сигнал в электронике и компьютерных сетях.

Достоинства и недостатки аналогового звукового сигнала

Если говорить о преимуществах аналогового сигнала как аудио таки видео, то одно из них связано с тем что именно в таком образе и виде человек воспринимает его своим органом слуха. И хотя впоследствии слух человека преобразует сигнал всё равно в набор импульсов, передаваемых в мозг, но тем не мнение современная техника ещё не научилась миновать уши как основной орган слуха и передавать сигнал непосредственно в мозг. Хотя нельзя и не отметить что данные исследования ведутся уже последние 70 лет и если они обвенчаются успехом то с таким понятием, как человеческая глухота будет покончено, а пока звуковые колебания каждый слышащий человек и воспринимающий их в полном объёме получает в виде аналогового сигнала. То есть, аналоговой звуковой сигнал имеет высокие показатели частотной глубины, а также неплохую сбалансированность между высокими и низкими частотами.

Основная проблема и недостаток с использованием чистого аналогового сигнала заключается в его хранении, а также способах тиражирования и передачи. Запись на любой из аналоговых хранителей аудиоинформации подвержен размагничиванию и механическим повреждением, поэтому спустя время записанная на них информация, значительно снижает качество в случае её воспроизведения. Виниловые диски сильно подвержены царапинам, да и тиражирование их довольно проблематичный и трудоемкий процесс. Выполнить копию аудиосигнала, записанного в аналоговом формате обозначает почти то же что и создать её заново.

Основная проблема и недостаток с использованием чистого аналогового сигнала заключается в его хранении, а также способах тиражирования и передачи. Запись на любой из аналоговых хранителей аудиоинформации подвержен размагничиванию и механическим повреждением, поэтому спустя время записанная на них информация, значительно снижает качество в случае её воспроизведения. Виниловые диски сильно подвержены царапинам, да и тиражирование их довольно проблематичный и трудоемкий процесс. Выполнить копию аудиосигнала, записанного в аналоговом формате обозначает почти то же что и создать её заново.

Импульсные ЦАП

В конце 70-тых широкое распространение получил альтернативный вариант ЦАП-ов, основанный на «импульсной» архитектуре – «дельта-сигма». Технология импульсных ЦАП-ов стала возможной появлению сверх-быстрых ключей и позволила использовать высокую несущую частоту.

Амплитуда сигнала является средним значением амплитуд импульсов (зеленым показаны импульсы равной амплитуды, а белым итоговая звуковая волна).

Например последовательность в восемь тактов пяти импульсов даст усредненную амплитуду (1+1+1+0+0+1+1+0)/8=0,625. Чем выше несущая частота, тем больше импульсов попадает под сглаживание и получается более точное значение амплитуды. Это позволило представить звуковой поток в однобитном виде с широким динамическим диапазоном.

Усреднение возможно делать обычным аналоговым фильтром и если такой набор импульсов подать напрямую на динамик, то на выходе мы получим звук, а ультра высокие частоты не будут воспроизведены из-за большой инертности излучателя. По этому принципу работают ШИМ усилители в классе D, где плотность энергии импульсов создается не их количеством, а длительностью каждого импульса (что проще в реализации, но невозможно описать простым двоичным кодом).

Мультибитный ЦАП можно представить как принтер, способный наносить цвет пантоновыми красками. Дельта-Сигма – это струйный принтер с ограниченным набором цветов, но благодаря возможности нанесению очень мелких точек (в сравнении с пантовым принтером), за счет разной плотности точек на единицу поверхности дает больше оттенков.

На изображении мы обычно не видим отдельных точек из-за низкой разрешающей способности глаза, а только средний тон. Аналогично и ухо не слышит импульсов по отдельности.

В конечном итоге при текущих технологиях в импульсных ЦАП можно получить волну, близкую к той, что теоретически должна получится при аппроксимации промежуточных координат.

Надо отметить, что после появления дельта-сигма ЦАП исчезла актуальность рисовать «цифровую волну» ступеньками, т.к. так ступеньками волну современные ЦАП не строят. Правильно дискретный сигнал строить точками соединенной плавной линией.

Являются ли идеальными импульсные ЦАП?

Но на практике не все безоблачно, и существует ряд проблем и ограничений.

Т.к. подавляющее количество записей сохранено в многоразрядном сигнале, то перевод в импульсный сигнал по принципу «бит в бит» требует излишне высокую несущую частоту, которую современные ЦАП не поддерживают.

Основной функцией современных импульсных ЦАП является перевод многоразрядного сигнала в однобитный с относительно невысокой несущей частотой с прореживанием данных. В основном именно эти алгоритмы и определяют конечное качество звучания импульсных ЦАП-ов.

Чтобы уменьшить проблему высокой несущей частоты, звуковой поток разбивается на несколько однобитных потоков, где каждый поток отвечает за свою группу разряда, что эквивалентно кратному увеличению несущей частоты от числа потоков. Такие ЦАП называются мультибитными дельта-сигма.

Сегодня импульсные ЦАП-ы получили второе дыхание в быстродействующих микросхемах общего назначения в продуктах компаний NAD и Chord за счет возможности гибко программировать алгоритмы преобразования.

В борьбе с пиратством диски формата SA-CD не поддерживались (и не поддерживаются до сих пор) компьютерами, что не позволяет делать их копии. Нет копий – нет широкой аудитории. Воспроизвести DSD аудиоконтент можно было только с отдельного SA-CD проигрывателя с фирменного диска. Если для PCM формата есть стандарт SPDIF для цифровой передачи данных от источника к отдельному ЦАП, то для DSD формата стандарта нет и первые пиратские копии SA-CD дисков были оцифровками с аналоговых выходов SA-CD проигрывателей (хоть ситуация и кажется глупой, но на деле некоторые записи выходили только на SA-CD, либо та же запись на Audio-CD специально была сделана некачественно для продвижения SA-CD).

Аналоговые, дискретные и цифровые сигналы

Любая физическая величина по характеру изменения ее значения может быть постоянной (если она имеет только одно фиксированное значение), дискретной (если она может иметь два или более фиксированных значений), или аналоговой (если она может иметь бесчисленное множество значений). Все эти величины могут быть преобразованы в цифровую форму.

Аналоговые сигналы

Аналоговым называется такой сигнал, который может быть представлен непрерывной линией из множества значений, определенных в каждый момент времени относительно временной оси. Значения аналогового сигнала произвольны в каждый момент времени, поэтому он может быть в принципе представлен как некая непрерывная функция (зависящая от времени как от переменной) либо как кусочно-непрерывная функция времени.

Аналоговым сигналом можно назвать, например, звуковой сигнал, генерируемый обмоткой электромагнитного микрофона или ламповым акустическим усилителем, поскольку такой сигнал непрерывен и его значения (напряжение или ток) сильно отличаются друг от друга в каждый момент времени.

На приведенном ниже рисунке изображен пример подобного рода аналогового сигнала.

Аналоговые величины могу иметь бесконечное множество значений в определенных пределах. Они непрерывны и их значения не могут изменяться скачками.

Пример аналогового сигнала: термопара передает в аналоговом виде значение температуры в программируемый логический контроллер, который управляет с помощью твердотельного реле температурой в электрической печи.

Дискретные сигналы

Если некий сигнал принимает произвольные значения лишь в отдельные моменты времени, то такой сигнал называют дискретным. Чаще всего на практике применяются дискретные сигналы, распределенные по равномерной временной решетке, шаг которой называется интервалом дискретизации.

Дискретный сигнал принимает определенные не нулевые значения лишь в моменты дискретизации, то есть он является не непрерывным в отличие от аналогового сигнала. Если из звукового сигнала вырезать небольшие кусочки определенного размера через равные интервалы, такой сигнал можно будет назвать дискретным.

Ниже приведен пример формирования подобного дискретного сигнала с интервалом дискретизации Т. Обратите внимание, что квантуется лишь интервал дискретизации, но не сами значения сигнала.

Дискретные сигналы имеют два и более фиксированных значений (количество их значений всегда выражается целыми числами).

Пример простого дискретного сигнала на два значения: срабатывание путевого выключателя (переключение контактов выключателя в определенном положении механизма). Сигнал с путевого выключателя может быть получен только в двух вариантах – контакт разомкнут (нет действия, нет напряжения) и контакт замкнут (есть действие, есть напряжение).

Цифровые сигналы

Когда дискретный сигнал принимает только какие-то фиксированные значения (которые могут быть расположены по сетке с определенным шагом), такие что они могут быть представлены как количество квантовых величин, такой дискретный сигнал называется цифровым. То есть цифровой сигнал — это такой дискретный сигнал, который квантован не только по промежуткам времени, но и по уровню.

Практически дискретные и цифровые сигналы в ряде задач отождествляются, и могут быть легко заданы в форме отсчетов с помощью вычислительного устройства.

На рисунке приведен пример формирования цифрового сигнала на базе аналогового. Обратите внимание, что значения цифрового сигнала не могут принимать промежуточных значений, а только определенные — целое количество вертикальных шагов сетки.

Цифровой сигнал легко записывается и перезаписывается в память вычислительных устройств, просто считывается и копируется без потери точности, тогда как перезапись аналогового сигнала всегда сопряжена с утратой некоторой, пусть и незначительной, части информации.

Обработка цифровых сигналов позволяет получать устройства с очень высокими характеристиками благодаря выполнению вычислительных операций совершенно без потерь качества, либо с пренебрежимо малыми потерями.

В силу этих достоинств, именно цифровые сигналы повсеместно распространены сегодня в системах хранения и обработки данных. Вся современная память — цифровая. Аналоговые носители информации (такие как пленочные кассеты и т.д.) давно ушли в прошлое.

Аналоговый и цифровой приборы для измерения напряжения:

Но даже у цифровых сигналов есть свои недостатки. Их невозможно передать напрямую как есть, ибо передача обычно реализуется посредством непрерывных электромагнитных волн. Поэтому при передаче и приеме цифровых сигналов необходимо прибегать к дополнительной модуляции и аналого-цифровому преобразованию. Меньший динамический диапазон цифровых сигналов (отношение наибольшего значения к наименьшему), обусловленный квантованностью значений по сетке, является еще одним их недостатком.

Существуют и такие области, где аналоговые сигналы незаменимы. Например аналоговый звук никогда не сравнится с цифровым, поэтому ламповые усилители и пластинки до сих пор не выходят из моды, несмотря на обилие цифровых форматов записи звука с самой высокой частотой дискретизации.

На приведенном ниже рисунке изображен пример подобного рода аналогового сигнала.

Отличие дискретного сигнала от цифрового

Про Азбуку Морзе наверное слышали все. Придумал художник Самуэль Морзе, другие новаторы усовершенствовали, а использовали все. Это способ передачи текста, где точками и тире закодированы буквы. Упрощенно, кодировка называется морзянкой. Её долго использовали на телеграфе и для передачи информации по радио. Кроме того, сигналить можно с помощью прожектора или фонарика.

Код морзянки зависит только от самого знака. А не от его продолжительности или громкости (силы). Как ни ударь ключом (моргни фонариком), воспринимаются только два варианта– точка и тире. Можно только увеличить скорость передачи. Ни громкость, ни продолжительность в расчёт ни принимаются. Главное, что бы сигнал дошёл.

Так же и цифровой сигнал. Важно закодировать данные с помощью 0 и 1. Получатель должен только разобрать, комбинацию нолей и единиц. Неважно с какой громкостью и какой продолжительностью будет каждый сигнал. Важно получить нолики и единички. Это суть цифровой технологии.

Дискретный сигнал получится если закодировать ещё громкость (яркость) и продолжительность каждой точки и тире, или 0 и 1. В этом случае вариантов кодировки больше, но и путаницы тоже. Громкость и продолжительность можно не разобрать. В этом и разница между цифровым и дискретным сигналами. Цифровой генерируется и воспринимается однозначно, дискретный с вариациями.

Дискретный сигнал получится если закодировать ещё громкость (яркость) и продолжительность каждой точки и тире, или 0 и 1. В этом случае вариантов кодировки больше, но и путаницы тоже. Громкость и продолжительность можно не разобрать. В этом и разница между цифровым и дискретным сигналами. Цифровой генерируется и воспринимается однозначно, дискретный с вариациями.

Как выглядят спектры аналогового и дискретного сигнала

Изображение сигналов можно представить как две функции. На рисунке наглядно представлено, чем отличается непрерывный сигнал от дискретного. Напряжение исходного изменяется плавно, обработанного прерывисто. Спектр дискретного периодически ступенчато совпадает с непрерывным.

p, blockquote 26,0,0,0,0 –>

p, blockquote 27,0,0,0,0 –>

Изменения дискретного происходят резко, через определённый период времени. Уровень в цифровой системе зашифровывается и любую величину напряжения описывают двоичным кодом. От частоты измерений зависит сглаженность преобразования и оригинальность передаваемых данных. Чем точнее описан уровень сигнала и чем чаще проводится и обрабатывается измерение, тем точнее совпадает спектр начального и переданного сигналов.

p, blockquote 28,0,0,0,0 –>

p, blockquote 29,0,0,0,0 –>


p, blockquote 24,0,0,1,0 –>

  1. Измерение через определенные интервалы времени амплитуды напряжения.
  2. Сравнение с эталоном и формирование данных.
  3. Отгрузка оцифрованных сведений об изменениях амплитуды на передатчик.

alex-day › Блог › Понятие о сигналах

АНАЛОГОВЫЕ И ЦИФРОВЫЕ СИГНАЛЫ .

Аналоговые электрические сигналы — сигналы, изменяющиеся во времени непрерывно и способные принимать любое значение в некотором диапазоне напряжений, тока, частоты или иных характеристик (метрик). Аналоговая природа естественна для многих физических процессов и сигналов — звука, перемещения, изменения температуры и т.п. Поэтому метрики данных физических процессов/сигналов удобно (и естественно) переводить в аналоговые электрические сигналы с целью дальнейшей их преобразования электронными схемами. Например, температура 25.256 градусов Цельсия может быть закодирована как напряжение 2.5256 В. Самыми большими проблемами использования аналоговых сигналов являются:
— их чувствительность к помехам, приводящая к искажению значений (например, в вышеприведенном примере помеха 0.1В приведет к ошибке температуры на 1 градус Цельсия);
— высокие погрешности обработки каскадами электронных схем (усиления, интегрирования и т.п.), связанные с сложностью/невозможностью изготовления электронных компонентов (резисторов, конденсаторов, транзисторов. микросхем) с параметрами (сопротивления, емкости, коэффициентами передачи и т.п.) высокой и сверхвысокой точности (до тысячных процента) и стабильности в диапазоне температур, давлений и т.д.

Читайте также:  Чем помыть новый холодильник перед первым использованием?

Дискретные электрические сигналы — сигналы, для которых допускаются лишь значения из заранее определенного ограниченного множества. Значения указываются с допустимой погрешностью. Например, дискретный электрический сигнал имеет три допустимых значения напряжений: 0В, 5В и 10В, с допуском ±1В. Дискретными могут быть физические процессы и сигналы. Например, состояние управляющей клавиши (вкл/выкл — 2 значения) или датчика установленной передачи в коробке передач автомобиля (количество дискретных значений равно числу передач) или импульсы в детекторе элементарных частиц (есть/нет). Использование дискретных сигналов имеет важное преимущество — допустимость установки значения с некоторой значительной погрешностью, что резко повышает помехоустойчивость и снижает требования к точности параметров электронных каскадов.

Цифровые электрические сигналы — так обычно называют те дискретные сигналы, которые имеют только два допустимых состояния. Данные состояния (например, уровни напряжения 0В и 5В) кодируют две цифры — «0» и «1». Данные цифры эквивалентны допустимым значениям разрядов двоичного представления чисел (двоичный разряд -binary digits или bit), а также допустимым значениям переменных в алгебре логики (булевой алгебре) — «Истина» (TRUE или «1») и «Ложь» (FALSE или «0»), что позволяет кодировать эти числа в виде цифровых электрических сигналов. С помощью простейших транзисторных каскадов, работающих в самом простом — ключевом режиме (включен/выключен), можно реализовать основные функции алгебры логики (логические (булевы) функции) и, их (логических функций) посредством, основные математические функции (сложение, вычитание, умножение, деление) для чисел в двоичном представлении. Существуют различные варианты схем хранения (памяти) для двухуровневых (цифровых) значений. Двухуровневый цифровой сигнал легко передавать на значительные расстояния при значительных помехах (например, «1» — напряжение = 10±5В, «0» — напряжение = 1.5±1.5В), причем не только по электрическим проводам, но и по каналам других типов, например по оптоволоконному кабелю («свет» включен/выключен).

Различают элементы с различными спо¬собами электрического кодирования двоичной информации;
• потенциальные,
• импульсные,
• импульсно-потенциальные.
При потенциальном способе кодирования при положитель¬ной логике за единицу («1») принимается высокий потенциал, за нуль («О») — низкий потенциал. Сигнал сохраняется неизмен¬ным на время не менее одного периода следования сигналов синхронизации (рис. 1, а).
При импульсном кодировании двоичной информации чаще всего «1» соответствует импульс, синфазный с сигналом син¬хронизации, а «О» — отсутствие импульса; значение сигнала в паузе между сигналами синхронизации не рассматривается (рис. 1, б).
Одной из разновидностей импульсного способа является ди¬намическое кодирование сигналов, когда единице соответствует последовательность импульсов между двумя импульсами син¬хронизации, а их отсутствие соответствует нулю (рис. 1, в).

Все эти свойства позволили положить цифровые сигналы в основу современных вычислительных устройств, в частности, микропроцессоров, и в основу систем хранения и передачи данных.

ЛОГИЧЕСКИЕ СОСТОЯНИЯ

Для кодирования значений логических переменных или двоичных разрядов (битов) обычно используется напряжение. Ток, частота и другие характеристики сигнала тоже применяются, но только в специальных случаях — в основном при передаче данных или как удобный вариант сопряжения электрических каскадов.
Допустимые уровни напряжения соответственно их значениям условно называют ВЫСОКИМ (HIGH) и НИЗКИМ (LOW). Как говорилось выше, уровень соответствует не одному, а диапазону значений напряжений: например, 2,5.5В — ВЫСОКИЙ уровень, 0.1 В — НИЗКИЙ уровень, но для удобства указывают только «номинальный» (обычно крайний по значению) уровень, например, 5В и 0В. Следует понимать, что НИЗКИМ уровнем понимают именно низкое значение напряжения, а не полное отсутствие сигнала, так как такой вариант может возникнуть при обрыве на линии.
Двум указанным уровням напряжения можно сопоставить пару логических значений (логических состояний, двоичных цифр).
Если ВЫСОКИЙ уровень напряжения цифрового сигнала соответствует значению «1» или «ИСТИНА», а НИЗКИЙ уровень напряжения соответствует значению «0» или «ЛОЖЬ», то такой способ кодирования логической переменной называется ПОЗИТИВНОЙ (ПОЛОЖИТЕЛЬНОЙ) ЛОГИКОЙ.
ЕСЛИ ВЫСОКИЙ уровень напряжения цифрового сигнала соответствует значению «0» или «ЛОЖЬ», а НИЗКИЙ уровень напряжения соответствует значению «1» или «ИСТИНА», то такой способ кодирования логической переменной называется НЕГАТИВНОЙ (ОТРИЦАТЕЛЬНОЙ) ЛОГИКОЙ.
Тип логики (ПОЗИТИВНАЯ или НЕГАТИВНАЯ) является не только характеристикой собственно цифрового сигнала, но также и характеристикой цифрового элемента (блока, схемы), который обрабатывает данный сигнал исходя именно из такого способа его кодирования. Например, элемент популярной логической микросхемы SN7408 в документации полностью именуется «двухвходовой элемент «И» с позитивным кодированием сигналов». Если же использовать негативное кодирование, то функция данного элемента изменится на «ИЛИ».
Современная элементная база и схемотехника в целом ориентирована на позитивную (положительную) логику. Однако в некоторых случаях негативная (отрицательныя) логика может оказаться более удобным способом кодирования цифровых или логических значений. Например, схема определения нажатия кнопки на клавиатуре часто построена таким образом, что ВЫСОКИЙ уровень вырабатывается, если кнопка не нажата, и НИЗКИЙ — при нажатии кнопки. То есть, если кодировать факт нажатия кнопки как «ИСТИНА» и при этом вырабатывается НИЗКИЙ уровень сигнала, то получаем негативное (отрицательное) кодирование. Часто удобство негативной логики для сигналов цифровых элементов определяется особенностями внутренней схемотехники этих элементов.
Чтобы не путаться с тем, какие элементы в схеме используют позитивное кодирование, а какие негативное, принято соглашение всеми элементами в схеме используется один тип кодирования сигналов (например, позитивное), а если на входе или выходе какого-нибудь элемента должен формироваться сигнал с негативным кодированием, то он преобразуется из/в позитивный путем инвертирования. Такие инвертированные сигналы обозначаются на схемах чертой над названием сигнала (знак булевой операции «отрицание»), а вход или выход элемента, на котором выполняется инверсия сигнала (зачастую это мнимое инвертирование — схема использует внутри себя непосредственно негативно закодированный сигнал), обозначается кружочком.

Примечания:
1) В силу большей естественной воспринимаемости (принцип «большему соответствует большее») и распространенности положительной логики на схемотехническом сленге часто называют ВЫСОКИЙ уровень напряжения — «1», а НИЗКИЙ уровень напряжения — «0». Таким образом, в случае использования отрицательной логики может возникнуть путаница: говоря о «единице на сигнальной линии», подразумевают ВЫСОКИЙ уровень напряжения, который на самом деле соответствует логическому значению «0».
2) Термины «позитивная» логика и «положительная» логика, а также «негативная» и «отрицательная» логика эквивалентны и в различных комбинациях встречаются в литературе. Первоисточник — английские слова «positive» и «negative». Так же встречается вариант «прямая»-«инверсная» логика (подразумевается. что сигнал с негативной логикой («инверсный») может быть получен путем инверсии сигнала с позитивной логикой («прямого»).

ПАРАМЕТРЫ ЦИФРОВЫХ СИГНАЛОВ

Параметрами реальных цифровых сигналов, наиболее важными для схемотехнического проектирования, являются:
— Диапазон напряжений для логических «0» и «1», для выходов логических элементов/схем и для входов цифровых элементов/схем;
— Нагрузочная способность (коэффициент разветвления по выходу) выходов цифровой схемы — fanout;
— Длительность переключения состояния — время измерения состояния сигнала с НИЗКОГО уровня на ВЫСОКИЙ и наоборот (перехода из логического «0» в «1» и наоборот) — transition time;
— Временная задержка цифрового сигнала при «прохождении» через логический элемент/схему — propagation delay.

Диапазоны напряжений для логических «0» и «1».

Так как именно напряжение используется для кодирования значений «0» и «1», то диапазон напряжений для логических «0» и «1» являются основным параметром цифровых схем. При этом каждому из логических уровней «0» и «1» соответствуют не фиксированные значения напряжения, например, 0В или 5В, а некоторый диапазон напряжений. Например, для микросхем семейства ТТЛ логическому «0» будет соответствовать напряжение, попадающее в диапазон от 0В до +0.8В, а логической «1» будет соответствовать напряжение в диапазоне от +2В до +5В. Кодирование логических уровней диапазонами сделано потому что:
1) Позволяет использовать цифровые элементы/схемы с достаточно значительными, допусками параметров входных и выходных каскадов, что сильно удешевляет их производство.
2) Допускает колебание параметров элементов/схем и соответствующих цифровых сигналов за счет изменения температур, электрической нагрузки и напряжения питания схем и т.п.
3) Позволяет игнорировать влияние шумов — паразитных напряжений, которые добавляются/вычитаются из рабочего напряжения при «прохождении» его через схему. Шумы возникают за счет емкостных и индуктивных связей между сигналами в схеме, помех приходящих по подключенным внешним цепям и цепям питания, за счет электромагнитных наводок.
Диапазоны напряжений цифровых сигналов, генерируемые выходами цифровых схем и воспринимаемые входами схем, делают разными. Диапазон, воспринимаемый входами более широкий по сравнению с диапазоном выходных сигналов, и диапазон выходов целиком перекрывается диапазоном входов, оставляя запас по границе минимального и максимального напряжений. Это гарантирует, что выходной сигнал вырабатываемый одной цифровой схемой и подаваемый на вход другой будет правильно восприниматься даже в условиях помех. Например, выход вырабатывает ВЫСОКИЙ уровень в диапазоне 4.5В — 5В, а вход будет воспринимать ВЫСОКИЙ уровень в диапазоне 3.5В-5.5В. Поэтому, если к выходному напряжению ВЫСОКОГО уровня равному 4.5В добавится помеха 1В, то суммарное напряжение будет 5.5В и будет воспринято входом верно — как ВЫСОКИЙ уровень.
Между диапазонами ВЫСОКОГО уровня и НИЗКОГО уровня располагается так называемая «мертвая зона». В пределах мертвой зоны производитель не гарантирует корректное восприятие уровня сигнала. Около середины мертвой зоны (но не точно) располагается пороговый уровень Шх.п (Vin.t, threshold voltage), ниже которого уровень сигнала на входе воспринимается как НИЗКИЙ, а выше — как ВЫСОКИЙ. Номинальное значение Цп определяется документацией на электронный компонент (микросхему), но реальное значение может смещаться в рамках мертвой зоны в зависимости от особенностей конкретного образца (микросхемы), от температуры, от старения компонента, от напряжения питания и других параметров.
Итого: среди основных параметров цифровых схем должны быть заданы следующие напряжения цифровых сигналов:
— Для цифровых входов:
— ивх.О.мин. (VIL.min) — минимальное напряжение, воспринимаемое как «0»;
— Uвх.0.макс.(VIL.max) — максимальное напряжение, воспринимаемое как «0»;
— ивхЛ.мин.(Ущ.тт) — минимальное напряжение, воспринимаемое как «1»;
— ивхЛ.макс.(Ущ.тах) — максимальное напряжение, воспринимаемое как «1»;
— ивх.п (VIT) — напряжение переключения (threshold voltage), значения выше которого воспринимаются как «1», а ниже — как «0».
— Для цифровых выходов:
— ивых.0 (VoL.typ) — типовое напряжение, которое устанавливается при выводе «0»;
— ивых.О.мин.(Усх.тт) — минимальное напряжение, которое может быть установлено при выводе «0»;
— ивых.0.макс.(^Л.тах) — максимальное напряжение, которое может быть установлено при выводе «0»;
— ивыхЛ(УоШур) — типовое напряжение, которое устанавливается при выводе «1»;
— ивыхЛ.мин.(УОН.тт) — минимальное напряжение, которое может быть установлено при выводе «1»;
— ивых.1.макс. (VOH.max) — максимальное напряжение, которое может быть установлено при выводе «1».
Указанные напряжения зависят от схемотехники и параметров выходных и входных электрических каскадов цифровых схем.

Еще одна особенность/проблема — это использование цифровых микросхем с различными напряжениями питания. Дело в том, что при изменении напряжения питания микросхем, изменяются и уровни напряжения высокого и низкого уровня (см. рисунок ниже). На нынешний момент в цифровой технике наиболее распространенными являются напряжения питания 5В, 3.3В, 2.5В, 1.8В. Необходимость снижения напряжения питания вызвана многими причинами, основными из которых являются снижение потребляемой и выделяемой мощности, повышение быстродействия схем, уменьшение физических размеров транзисторов на кристалле интегральных микросхем.

Видно, что уровни схем с различным питанием не совместимы между собой. При этом их часто приходится использовать совместно в одной схеме. Например, электропитание микропроцессора может быть 5В, а питание подключенных к нему микросхем — 3.3В. И аналогов с иным питанием не производится! В таком случае добавляют специальные каскады/микросхемы преобразования уровней напряжения цифровых сигналов. Иногда эти каскады встроены в микропроцессоры. Иногда удается добиться частичной совместимости уровней, например, микросхема с питанием 3.3В допускает подключение к ней входных сигналов с напряжением до 5В с корректным распознаванием ВЫСОКОГО и НИЗКОГО уровней. Обратного подключения может не допускаться, например выходов «3.3В» ко входам «5В».
Нужно отметить, что так как любое совместное использование схем с различными уровнями напряжений это потенциальный источник ошибок и часто причина усложнения схемы, то, без особой необходимости, стараются не делать смешанных схем.

Нагрузочная способность (коэффициент разветвления по выходу)

Нагрузочная способность выхода цифровой схемы показывает, какое количество входов цифровых схем может быть подключено к данному выходу без перегрузки выходных каскадов и без искажения уровней цифрового сигнала для входов. Нагрузочная способность зависит и устанавливается для пары типов «выход-вход». Например, для выхода типа X устанавливается количество подключаемых входов типа У и количество подключаемых входов типа Z и т.п. Нагрузочная способность может различаться для уровней ВЫСОКИЙ и НИЗКИЙ, но обычно указывается только одно — меньшее значение.
Типовая нагрузочная способность — 20 входов того же типа, что и выход. Если к выходу одного типа подключены входы другого типа, то соотношение изменяется.
Ниже перечислены отрицательные последствия перегрузки выходов:
— Выходное напряжение НИЗКОГО уровня может превысить Ивх.О.макс. и НИЗКИЙ уровень будет определен как ВЫСОКИЙ;
— Выходное напряжение ВЫСОКОГО уровня может быть ниже ИвхЛ.мин. и ВЫСОКИЙ уровень будет определен как НИЗКИЙ;
— Время изменения уровня с НИЗКОГО на ВЫСОКИЙ и обратно превышает значение, допустимое спецификацией данной схемы;
— Задержка распространения сигнала через схему превышает значение, допустимое спецификацией данной схемы;
— Перегрев элементов схемы из-за повышенного тепловыделения, возникающего из-за перегрузки. В результате может возникнуть изменение параметров схемы (уровней напряжения, нагрузочных способностей, параметров быстродействия) или физическая порча перегретых элементов.

Читайте также:  Штокроза: описание, посадка и уход

Длительность переключения состояния

В идеальном случае ВСЕ выходы цифровой схемы или ее элемента изменяют свое состояние мгновенно и одновременно. Однако реальные выходы не могут моментально переключиться с ВЫСОКОГО на НИЗКИЙ уровень и наоборот: необходимо время на перезаряд паразитных емкостей элементов цифровой схемы или емкостей и индуктивностей проводников на плате. В итоге на рисунке идеальный сигнал (a) приобретает реальную форму (с). Условное изображение на временных диаграммах «постепенного перехода» выхода цифровой схемы из состояния в состояние показано на (b).
Время перехода с НИЗКОГО уровня в ВЫСОКИЙ (Tr) называют «длительностью положительного фронта», иногда просто «длительность фронта», или rise time. Время перехода с ВЫСОКОГО уровня в НИЗКИЙ (Tf) называют «длительностью отрицательного фронта», или «длительностью спада», или fall time. Эти времена обычно близкие по значению, но немного различаются у выходов цифровых схем. Для различных типов выходов (ТТЛ, КМОП и других) эти времена могут различаться в разы. Длительности переходов возрастают при подключении большего числа входов к выходу. Это объясняется, в основном, ростом значения емкости, подключенной к выходу за счет входных емкостей входов. Для наиболее распространенных на сегодня типа КМОП длительности переходов находятся в пределах 5-10 ns для типового числа подключенных входов. Для быстродействующих каскадов «внутри» СБИС процессоров, памяти и т.п. это время уменьшается до десятых — сотых наносекунды.

Задержка перехода является отрицательным фактором функционирования цифровых схем и, наряду с задержкой распространения сигнала, значительно усложняет их разработку. Основные причины этого:
— нахождение выхода в неопределенном состоянии приводит к возможности некорректного срабатывания входа, причем многократного;
— рассинхронизация в работе элелементов/частей цифровых схем;
— повышенное энергопотребление во время нахождения в неопределенном состоянии.


Задержка распространения сигналов.

Задержкой распространения сигнала через элемент (propagation delay, tp) называют время между фронтом (перепадом) цифрового сигнала на входе элемента и вызванным им (входным фронтом) перепадом сигнала на выходе элемента. Задержка распространения вызвана временем срабатывания транзисторных ключей внутри элемента. Она будет больше, чем больше количество таких ключей по пути распространения сигнала внутри элемента, т.е. количество последовательных каскадов. Задержка распространения может быть разной для перепада на выходе с НИЗКОГО на ВЫСОКИЙ уровень (tpLH) и для перепада с ВЫСОКОГО в НИЗКИЙ уровень (tpHL).

Так как именно напряжение используется для кодирования значений «0» и «1», то диапазон напряжений для логических «0» и «1» являются основным параметром цифровых схем. При этом каждому из логических уровней «0» и «1» соответствуют не фиксированные значения напряжения, например, 0В или 5В, а некоторый диапазон напряжений. Например, для микросхем семейства ТТЛ логическому «0» будет соответствовать напряжение, попадающее в диапазон от 0В до +0.8В, а логической «1» будет соответствовать напряжение в диапазоне от +2В до +5В. Кодирование логических уровней диапазонами сделано потому что:
1) Позволяет использовать цифровые элементы/схемы с достаточно значительными, допусками параметров входных и выходных каскадов, что сильно удешевляет их производство.
2) Допускает колебание параметров элементов/схем и соответствующих цифровых сигналов за счет изменения температур, электрической нагрузки и напряжения питания схем и т.п.
3) Позволяет игнорировать влияние шумов — паразитных напряжений, которые добавляются/вычитаются из рабочего напряжения при «прохождении» его через схему. Шумы возникают за счет емкостных и индуктивных связей между сигналами в схеме, помех приходящих по подключенным внешним цепям и цепям питания, за счет электромагнитных наводок.
Диапазоны напряжений цифровых сигналов, генерируемые выходами цифровых схем и воспринимаемые входами схем, делают разными. Диапазон, воспринимаемый входами более широкий по сравнению с диапазоном выходных сигналов, и диапазон выходов целиком перекрывается диапазоном входов, оставляя запас по границе минимального и максимального напряжений. Это гарантирует, что выходной сигнал вырабатываемый одной цифровой схемой и подаваемый на вход другой будет правильно восприниматься даже в условиях помех. Например, выход вырабатывает ВЫСОКИЙ уровень в диапазоне 4.5В — 5В, а вход будет воспринимать ВЫСОКИЙ уровень в диапазоне 3.5В-5.5В. Поэтому, если к выходному напряжению ВЫСОКОГО уровня равному 4.5В добавится помеха 1В, то суммарное напряжение будет 5.5В и будет воспринято входом верно — как ВЫСОКИЙ уровень.
Между диапазонами ВЫСОКОГО уровня и НИЗКОГО уровня располагается так называемая «мертвая зона». В пределах мертвой зоны производитель не гарантирует корректное восприятие уровня сигнала. Около середины мертвой зоны (но не точно) располагается пороговый уровень Шх.п (Vin.t, threshold voltage), ниже которого уровень сигнала на входе воспринимается как НИЗКИЙ, а выше — как ВЫСОКИЙ. Номинальное значение Цп определяется документацией на электронный компонент (микросхему), но реальное значение может смещаться в рамках мертвой зоны в зависимости от особенностей конкретного образца (микросхемы), от температуры, от старения компонента, от напряжения питания и других параметров.
Итого: среди основных параметров цифровых схем должны быть заданы следующие напряжения цифровых сигналов:
— Для цифровых входов:
— ивх.О.мин. (VIL.min) — минимальное напряжение, воспринимаемое как «0»;
— Uвх.0.макс.(VIL.max) — максимальное напряжение, воспринимаемое как «0»;
— ивхЛ.мин.(Ущ.тт) — минимальное напряжение, воспринимаемое как «1»;
— ивхЛ.макс.(Ущ.тах) — максимальное напряжение, воспринимаемое как «1»;
— ивх.п (VIT) — напряжение переключения (threshold voltage), значения выше которого воспринимаются как «1», а ниже — как «0».
— Для цифровых выходов:
— ивых.0 (VoL.typ) — типовое напряжение, которое устанавливается при выводе «0»;
— ивых.О.мин.(Усх.тт) — минимальное напряжение, которое может быть установлено при выводе «0»;
— ивых.0.макс.(^Л.тах) — максимальное напряжение, которое может быть установлено при выводе «0»;
— ивыхЛ(УоШур) — типовое напряжение, которое устанавливается при выводе «1»;
— ивыхЛ.мин.(УОН.тт) — минимальное напряжение, которое может быть установлено при выводе «1»;
— ивых.1.макс. (VOH.max) — максимальное напряжение, которое может быть установлено при выводе «1».
Указанные напряжения зависят от схемотехники и параметров выходных и входных электрических каскадов цифровых схем.

Чем отличается аналоговое ТВ от цифрового

Аналоговые – это естественные, окружающие нас повсеместно виды сигналов. В природе все звуки, цвета, изображения, вкусы и запахи возникают и передаются в виде аналоговых данных. Например, чтобы иметь зрительное представление об окружающем мире, человеку важно получать два вида аналоговой информации – цвет и яркость наблюдаемых объектов. В сетчатке глаза нейроны становятся аналогом цвета и яркости, и в мозгу возникает визуальная картина действительности. Но эта картина может искажаться туманом, дождем, снегом, дымом и другими зрительными помехами.

Подобным образом передается информация и в аналоговом телевидении:

Сначала изображение и звук поступают на микрофон и камеру;

Затем преобразуются в электрические сигналы, которые становятся простым аналогом звука и изображения;

Телевышка передаёт, а бытовая антенна принимает сигнал;

В телевизоре аналогом электрического сигнала станут звук и видеокартинка.

Цифровое телевидение устроено иначе:

На первом этапе в камере и микрофоне электрический сигнал так же станет аналогом звука и картинки;

Но для дальнейшей передачи аналого-цифровой преобразователь зашифрует данные в цифровой код, и только тогда вышка передаст сигнал в эфир.

Телевизионная антенна примет цифровые данные.

Далее всё зависит от телевизора. Если он оборудован встроенным цифро-аналоговым преобразователем (ресивером), то телевизор поймёт и обработает сигнал. На экране появится изображение, из динамиков послышится звук. Если нет, то данные для него остануться не расшифрованными, поэтому просматривать любимые телепередачи не получится.

Телевизионная антенна примет цифровые данные.

Table of Contents:
  • Сравнительная таблица
  • Содержание: Аналоговый против Цифрового
  • Определения аналоговых и цифровых сигналов
  • Свойства цифровых и аналоговых сигналов
  • Различия в использовании в оборудовании
  • Сравнение аналогового и цифрового качества
  • Отличия в приложениях

Аналоговые и цифровые сигналы используются для передачи информации, обычно через электрические сигналы. В обеих этих технологиях информация, такая как любое аудио или видео, преобразуется в электрические сигналы. Разница между аналоговыми и цифровыми технологиями заключается в том, что в аналоговых технологиях информация преобразуется в электрические импульсы различной амплитуды. В цифровой технологии перевод информации осуществляется в двоичном формате (ноль или единица), где каждый бит представляет две разные амплитуды.


Цифровой сигнал использует дискретные (прерывистые) значения. Напротив, нецифровые (или аналоговые) системы используют непрерывный диапазон значений для представления информации. Хотя цифровые представления являются дискретными, представленная информация может быть либо дискретной, такой как цифры или буквы, либо непрерывной, такой как звуки, изображения и другие измерения непрерывных систем.

Цифровые усилители против аналоговых. Что лучше?

Цифровая техника постоянно развивается, и, наряду с этим развитием, в продаже появляется всё большее количество полностью цифровых усилителей. Это, в свою очередь, всё более остро ставит вопрос относительно того, какой тип усилителей всё таки лучше: цифровой или аналоговый. Абсолютное большинство заядлых аудиофилов и энтузиастов Hi-Fi аудио техники ответят на этот вопрос однозначно и не задумываясь – «конечно аналоговые лучше». Не будем спешить с выводами и попробуем во всём разобраться. Скажу сразу, что как бы мы не старались сопротивляться, всё равно за цифровой техникой будущее и до настоящего времени за ней было только будущее, но не настоящее, так как качество звука первых моделей цифровых усилителей было мягко говоря не самым хорошим. В настоящее время ситуация изменилась кардинальным образом.

В чём же принципиальная разница между цифровыми и аналоговыми усилителями? Аналоговый усилитель получает от источника сигнал в аналоговой форме, в виде переменного тока и напряжения, изменяющегося со звуковой частотой, усиливает его и передаёт на акустические системы. Цифровой усилитель работает только с цифровыми сигналами, он получает от источника сигнал в цифровой форме (в виде ноликов и единичек, а точнее в виде импульсов сигнал есть/нет), усиливает его и только после этого, перед непосредственной передачей на акустические системы, преобразует его в аналоговыю форму.

К сожалению, цифровые усилители до сих пор не получили широкого признания в среде аудиофилов, но, зачастую, незаслуженно. Подавляющее большинство аудиофилов, предпочитающих High-End стереосистемы, заранее отвергают цифровые усилители и даже не желают их прослушивать, основывая своё мнение, зачастую ошибочное, на критических журнальных статьях и мнениях «специалистов», большинство из которых даже отдалённо не представляют о чём говорят. Да, пожалуй, цифровые усилители нельзя назвать полностью идеальными, но ведь аналоговые аппараты тоже обладают своими недостатками.

Пожалуй единственным случаем, когда я полностью отверг бы идею использования цифрового усилителя в стереосистеме является случай, когда в качестве одного из источников используется проигрыватель виниловых пластинок (он же виниловый проигрыватель или LP-проигрыватель).

Ни для кого не секрет, что виниловый проигрыватель является стопроцентным аналоговым источником сигнала, также секретом не является то, что любая оцифровка сигнала приводит к некоторой потере звуковой информации, а именно: звук немного теряет свою «аналоговость» и величина этой потери напрямую зависит от качества аналого-цифрового и цифро-аналогового преобразователей (digital-analog converter, он же DAC).

Справедливо замечу, что аналоговый звук является эталоном для записи (лучше аналоговой записи может быть только живое выступление музыкантов) и насколько бы не был совершенен цифро-аналоговый преобразователь, он неизбежно немного ухудшит звук (это может быть ничтожно малое ухудшение, которое многие возможно даже не заметят, но оно всё таки будет). А, как уже упоминалось ранее, цифровые усилители работают только с цифровыми сигналами, следовательно, если к нему подключить аналоговый LP-проигрыватель виниловых пластинок, то усилитель будет вынужден преобразовать его аналоговый сигнал в цифровой, с которым он в дальнейшем будет работать, а после усиления сигнал будет вновь преобразован в аналоговый и передан на акустические системы. Это двойное преобразование аналог-цифра-аналог не испортит звук, но сделает его похожим на звук с компакт диска, следовательно, Вы потеряете ту «аналоговость», ради которой скупали пластинки и потратили средства на приобретение качественного проигрывателя винила.

Что же касается воспроизведения CD, здесь оба усилителя конкурируют на равных и сейчас мы разберёмся почему. CD-диск, как таковой, несёт на себе запись в цифровой форме, значит заведомо не является аналоговым, значит та самая «аналоговость» звука уже потеряна на этапе оцифровки Вашей любимой музыки и записи её на диск. CD-проигрыватель считывает звуковую информацию в цифровой форме с диска, а встроенный или внешний цифро-аналоговый преобразователь преобразует её в аналоговую форму, при этом качество воспроизведения CD-диска напрямую зависит от качества считывания информации с поверхности компакт диска и точности преобразования её в аналоговую форму. Системы считывания в настоящее время уже почти достигли своей высшей точки развития, а цифро-аналоговые преобразователи продолжают развиваться.

Таким образом, если в CD-проигрывателе установлен некачественный цифро-аналоговый преобразователь, то некачественно преобразованный в аналоговую форму сигнал поступает с проигрывателя на аналоговый усилитель. Стоит отметить, что даже если аналоговый усилитель в данном случае будет самый лучший в мире, то он всё равно не сможет улучшить качество звука, он сможет лишь не ухудшить его, ведь идеальный усилитель должен только усиливать сигнал и не вносить в него даже малейших изменений. Таким образом, плохой цифро-аналоговый преобразователь, установленный в CD-проигрывателе станет причиной общего ухудшения качества звука, независимо от того, что мы выбрали лучший образец усилителя (аналоговый усилитель, в данном случае, не панацея, как видите).

Читайте также:  Художественная роспись комнат

Давайте теперь представим принцип действия стереосистемы на основе связки «CD-проигрыватель + цифровой усилитель».

Для того, чтобы нам ощутить все преимущества использования цифрового усилителя нам потребуется CD-проигрыватель с цифровыми выходами на задней панели (это разъёмы с которых можно получить сигнал в цифровой форме до того как встроенный цифро-аналоговый преобразователь преобразует его в аналоговую форму) или CD-проигрывателю предпочесть CD-транспорт, в котором цифро-аналоговый преобразователь в принципе отсутствует (зачем платить за цифро-аналоговый преобразователь встроенный в проигрыватель, если мы его не собираемся использовать при подключении к цифровому усилителю). После того как усилитель усиливает сигнал в цифровой форме при помощи встроенного цифро-аналогового преобразователя, он преобразует усиленный цифровой сигнал в аналоговую форму и передаёт его акустические системы.

Получается, что мы как бы отказываемся от «услуг» родного встроенного в CD-проигрыватель цифро-аналогового преобразователя в пользу цифро-аналогового преобразователя, установленного в цифровой усилитель (это позволит существенно повысить качество воспроизведения в случае если цифро-аналоговый преобразователь стоящий в цифровом усилителе лучше по качеству чем тот, что стоит в CD-проигрывателе или наоборот ухудшить, если ситуация обратная).

Справедливости ради замечу, что CD-проигрыватель к цифровому усилителю можно подключить и через аналоговые входы-выходы, но тогда теряется смысл использования цифрового усилителя, а многократное преобразование аналога в цифру и обратно не очень благотворно повлияет на звук. Прямое же подключение через цифровой кабель кардинальным образом уменьшает количество ненужных преобразований аналога в цифру и обратно и, соответственно, существенно снижается негативное влияние на звук.

Итак, если сравнить оба варианта (с аналоговым и с цифровым усилителем), то можно заметить, что основная разница, если не вдаваться в детали, заключается в том, что в случае использования аналогового усилителя цифро-аналоговый преобразователь находится перед усилителем, а в случае с цифровым усилителем цифро-аналоговый преобразователь находится после усилителя. И самое главное, что в обоих случаях звук был изначально оцифрован, а следовательно, и в одной системе и во второй та самая «аналоговость» уже отсутствует.

Основной вывод из вышесказанного: если цифро-аналоговый преобразователь, установленный в CD-проигрыватель лучше по качеству чем тот, который стоит в цифровом усилителе, то лучше предпочесть аналоговый усилитель, а если цифро-аналоговый преобразователь в цифровом усилителе превосходит по качеству аналогичный установленный в CD-проигрывателе, то цифровой усилитель – это лучший вариант для Вас.

У цифровых усилителей есть дополнительные достоинства и возможности в отличии от их аналоговых конкурентов – это цифровая обработка сигнала не ухудшающая качество звука, к примеру, любая обработка сигнала (регуляторы тембра и прочее) в аналоговом усилителе неизбежно негативно отразится на качестве звучания). В зависимости от производителя и модели цифрового усилителя виды обработки сигнала колеблятся от элементарной регулировки тембров и частот, до сложнейших алгоритмов по коррекции акустики помещения и амплитудно-частотных характеристик всей системы. Кроме того цифровые усилители самые экономичные по энергопотреблению, имеют самый высокий КПД, обладают внушительной мощностью, огромным коэффициентом демпфирования акустических систем и практически не нагреваются при работе. Но не забывайте, что окончательный выбор предстоит делать Вам после прослушивания.

В чём же принципиальная разница между цифровыми и аналоговыми усилителями? Аналоговый усилитель получает от источника сигнал в аналоговой форме, в виде переменного тока и напряжения, изменяющегося со звуковой частотой, усиливает его и передаёт на акустические системы. Цифровой усилитель работает только с цифровыми сигналами, он получает от источника сигнал в цифровой форме (в виде ноликов и единичек, а точнее в виде импульсов сигнал есть/нет), усиливает его и только после этого, перед непосредственной передачей на акустические системы, преобразует его в аналоговыю форму.

Особенности цифрового ТВ

DTV – вещание с использованием шифрования. В цепи поток имеет два возможных значения:

  • «0» – заземление, или нулевое напряжение;
  • «1» – питание, напряжение, причем неважно, какое.

Цифровой сигнал – это последовательность кодов, взятых из конечного набора значений. Волну невозможно перехватить, она устойчива к помехам.

В цифровом телевидении, так же как и в аналоговом, существует 3 способа передачи данных:

  • Эфирное. Станции передают зашифрованный сигнал, а телевизоры принимают его и декодируют в аналоговый при помощи специального встроенного или внешнего оборудования: тюнеров, ресиверов и приставок;
  • Кабельное. Распространение сжатых данных по оптоволокну. Кабельные провайдеры могут разместить около 10 цифровых каналов SD и 2 HD на одном частотном канале;
  • Спутниковое. Процесс идентичен и для старого, и для нового ТВ, разница в конечном продукте: DTV поставляет контент высокого качества.

В разных странах используются разные стандарты цифрового вещания:

  • DVB (Часть Азии, Европа, в том числе РФ);
  • ATSC (США, Канада, Южная Корея);
  • DTMB (материковый Китай, Гонконг, Куба).

Стандарт DVB использует кодированную модуляцию уплотнения канала. Распространение эфирного сигнала происходит в формате DVB-T2. Система отличается множеством преимуществ, одно из них – увеличение скорости передачи данных c 24,13 до 35,4 Мбит/с.


Стандарт DVB использует кодированную модуляцию уплотнения канала. Распространение эфирного сигнала происходит в формате DVB-T2. Система отличается множеством преимуществ, одно из них – увеличение скорости передачи данных c 24,13 до 35,4 Мбит/с.

Характеристики преобразователей аудиосигнала.

Количество отсчетов в секунду – частота дискретизации

Для АЦП частота дискретизации определяет, с какой частотой преобразователь будет измерять амплитуду аналогового сигнала и передавать её в цифровом виде. Для ЦАП – наоборот, с какой частотой цифровые данные будут конвертироваться в аналоговый сигнал.

Чем выше частота дискретизации, тем результат преобразования ближе к исходному сигналу. Казалось бы, чем выше этот показатель, тем лучше. Но, согласно теореме Котельникова, для передачи сигнала любой частоты достаточно частоты дискретизации, вдвое большей частоты самого сигнала. С учетом того, что самая высокая частота, различимая на слух – 20 кГц (у большинства людей верхняя граница слышимого звука вообще проходит в районе 15-18 кГц), частоты дискретизации в 40 кГц должно быть достаточно для качественной оцифровки любого звука. Частота дискретизации audio CD: 44.1 кГц, и максимальная частота дискретизации mp-3 файлов: 48 кГц, выбраны как раз исходя из этого критерия. Соответственно, ЦАП, проигрывающий аудиотреки и mp3-файлы, должен иметь частоту дискретизации не менее 48 кГц, иначе звук будет искажаться.

Зеленым цветом показан исходный аудиосигнал, состоящий из нескольких гармоник, близких к 20 кГц. Малиновым цветом обозначен цифровой сигнал, дискретизированный с частотой 44.1 кГц. Синим цветом обозначен аналоговый сигнал, восстановленный из цифрового. Хорошо заметны потери в начале и конце отрезка.

Теоретически, такой частоты дискретизации должно быть достаточно, но практически иногда возникает надобность в большей частоте: реальный аудиосигнал не полностью отвечает требованиям теоремы Котельникова и при определенных условиях сигнал может искажаться. Поэтому у ценителей чистого звука популярны записи с частотой дискретизации 96 кГц.

Частота дискретизации ЦАП выше, чем у исходного файла, на качество звука не влияет, поэтому приобретать ЦАП с частотой дискретизации выше 48 кГц имеет смысл, только если вы собираетесь прослушивать с его помощью blu-ray и DVD-аудио или loseless музыку с частотой дискретизации, большей 48 кГц.

Если вы твердо нацелились на приобретение преобразователя с частотой дискретизации выше 48 кГц, то экономить на покупке не стоит. ЦАП, как и любое другое аудиоустройство, добавляет в сигнал собственный шум. У недорогих моделей шумность может быть довольно высокой, а с учетом высокой частоты дискретизации, на выходе такого преобразователя может появиться опасный для динамиков ультразвуковой шум. Да и в слышимом диапазоне шумность может оказаться настолько высокой, что это затмит весь выигрыш от повышения частоты дискретизации.

Чем выше разрядность, тем выше точность измерения или восстановления амплитуды сигнала

Разрядность – вторая характеристика, непосредственно влияющая на качество преобразования.

Разрядность ЦАП должна соответствовать разрядности аудиофайла. Если разрядность ЦАП будет ниже, он, скорее всего, просто не сможет преобразовать этот файл.

Треки audio CD имеют разрядность 16 бит. Это подразумевает 65536 градаций амплитуды – в большинстве случаев этого достаточно. Но теоретически, в идеальных условиях, человеческое ухо способно обеспечить большее разрешение. И если о разнице между записями с дискретизацией 96 кГц и 48 кГц можно спорить, то отличить 16-битный звук от 24-битного при отсутствии фонового шума могут многие люди с хорошим слухом. Поэтому, если ЦАП предполагается использовать для прослушивания DVD и Blu-ray аудио, следует выбирать модель с разрядностью 24.

Чем выше разрядность АЦП, тем с большей точностью измеряется амплитуда звукового сигнала.

При выборе АЦП следует исходить из того, какие задачи с его помощью предполагается решать: для оцифровывания «шумных» аудиозаписей со старых магнитофонных лент высокая разрядность АЦП не нужна. Если же вы планируете получить качественную цифровую запись со студийного микрофона, имеет смысл воспользоваться 24-битным АЦП.

Количество каналов определяет, какой звук сможет преобразовывать устройство. Двухканальный преобразователь сможет обрабатывать стерео и моно звук. Но для преобразования сигнала формата Dolby Digital или Dolby TrueHD понадобится, соответственно, шести- или восьмиканальный преобразователь.

Соотношение сигнал/шум определяет уровень шума, добавляемого в сигнал преобразователем. Чем выше этот показатель, тем более чистым остается сигнал, проходящий через преобразователь. Для прослушивания музыки нежелательно, чтобы этот показатель был ниже 75 дБ. Hi-Fi аппаратура обеспечивает минимум 90 дБ, а высококачественные Hi-End устройства способны обеспечить отношение сигнал/шум в 110-120 дБ и выше.

ЦАП должен иметь цифровой вход – это может быть S/PDIF, USB или Bluetooth. Выходу ЦАП аналоговый – «джек» (jack) или «тюльпаны» (RCA). У АЦП все наоборот – аналоговый вход и цифровой выход. Хорошо, если преобразователь имеет несколько различных входов и выходов – это расширяет возможности по подключению к нему различных устройств. Если же вход на преобразователе один, убедитесь, что аналогичный выход есть на устройстве, к которому предполагается его подключать.

Преобразователи аудиосигнала скорее относятся к студийному и домашнему оборудованию, поэтому питание большинства преобразователей производится от сети 220В. Но существуют и преобразователи, которые питаются от аккумуляторов и могут быть использованы автономно. Это может оказаться удобным при использовании преобразователя с мобильным устройством – ноутбуком, планшетом, смартфоном или плеером.

Некоторые преобразователи получают питание через разъем micro-USB, при этом получать (или передавать) аудиосигнал через этот разъем они не могут. Если вам важно, чтобы ЦАП мог читать аудиофайлы на USB-носителях, перед покупкой убедитесь, что USB на устройстве используется не только для питания.

ЦАП должен иметь цифровой вход – это может быть S/PDIF, USB или Bluetooth. Выходу ЦАП аналоговый – «джек» (jack) или «тюльпаны» (RCA). У АЦП все наоборот – аналоговый вход и цифровой выход. Хорошо, если преобразователь имеет несколько различных входов и выходов – это расширяет возможности по подключению к нему различных устройств. Если же вход на преобразователе один, убедитесь, что аналогичный выход есть на устройстве, к которому предполагается его подключать.

Модификация ПВ1 – ПВ5

Характеристики и технические показатели совпадают с АПВ, только вместо алюминия используется медь.

Отличается цветной изоляцией и использованием провода при сборке управляемых шкафов.


Популярен для построения электрических линий, так как устойчив к высокой влажности. Выдерживает от -50 до +70°С.

Виды кабелей и проводов и их назначение: описание и классификация + расшифровка маркировки

Существующие многообразие кабелей и проводов в массе своей исчисляются трёхзначными числами. Поэтому описать весь ассортимент в рамках одной статьи не представляется возможным.

Между тем, расписывать все виды кабелей и проводов и их назначение вовсе необязательно. Достаточно иметь представление относительно стандартов маркировки и уметь извлекать нужные сведения из характеристик, чтобы из многообразия кабельной продукции выбрать подходящий вариант согласно назначению.

Рассмотрим основные моменты, как можно научиться различать электропровода среди массива таких изделий, а также приведем описания наиболее востребованных проводов и кабелей.


Исполнением кабеля или электрических проводов определяются технико-эксплуатационные характеристики продукта. Собственно, исполнение кабельной или проводной продукции – это, в большинстве конструктивных вариаций, достаточно простой технологический подход.

С помощью измерительного прибора

При проверке бытовой сети 220 V не надо знать, как определить полярность. Электропитание организовано с применением переменного тока, поэтому устанавливают переключатель мультиметра в соответствующее положение. Прикосновение щупами к проводам фаза-ноль (фаза-заземление) сопровождается индикацией соответствующего напряжения (≈220 V). Разница потенциалов между нулевым проводником и заземлением минимальна.

К сведению. При проверке старой двухпроводной схемы одним из щупов касаются арматуры в бетонной плите, радиатора системы отопления, иного заземленного элемента строительной конструкции.

При переключении на постоянное напряжение мультиметр покажет, где плюс и минус. При отсутствии достоверной информации об электрических параметрах в цепи начинают с максимального диапазона измерений с последовательным переходом к меньшим величинам при недостаточной точности.

Такой «прибор» пригодится для проверки цепей постоянного тока при отсутствии специализированных средств измерения. Пузырьки около минусового провода – это выделение водорода в процессе электролизной реакции. Область возле плюса через несколько минут приобретет зеленоватый оттенок.


Далее подсоединяют один из проводов к известной нулевой линии. Другим последовательно проверяют иные жилы кабеля. Загорание лампы свидетельствует о наличии фазы.

Добавить комментарий