Электробезопасность

Электробезопасность: что необходимо знать?

Академия ДПО проводит курсы по электробезопасности. У нас вы можете пройти обучение и получить группу допуска по специальности электробезопасность.

Электробезопасность — это система организационных и технических мероприятий и средств, обеспечивающих защиту людей от вредного и опасного воздействия электрического тока, электрической дуги, электромагнитного поля и статического электричества.

Электробезопасность включает в себя правовые, социально-экономические, организационно-технические, санитарно-гигиенические, лечебно-профилактические, реабилитационные и иные мероприятия. Правила электробезопасности регламентируются правовыми и техническими документами, нормативно-технической базой. Знание основ электробезопасности обязательно для персонала, обслуживающего электроустановки и электрооборудование.

Электробезопасность — это система организационных и технических мероприятий и средств, обеспечивающих защиту людей от вредного и опасного воздействия электрического тока, электрической дуги, электромагнитного поля и статического электричества.

Основы электробезопасности. Лучшие статьи

В этой подборке собраны лучшие статьи сайта Электрик Инфо по электро- и пожаробезопасности при эксплуатации электроприборов и электропроводки в быту.

Электрический ток опасен для жизни! При этом главная опасность его в том, что он не видим и не слышим. Степень его воздействия зависит от многих факторов: от рода и величины напряжения и тока, частоты электрического тока, пути тока через тело человека, продолжительности воздействия электрического тока на организм человека, условий внешней среды.

Переменный ток промышленной частоты человек начинает ощущать при 0,6 – 15 мА. Ток 12 – 15 мА вызывает сильные боли в пальцах и кистях. При токе 50 – 80 мА наступает паралич дыхания, а при 90 – 100 мА наступает паралич сердца и смерть. Нужно обязательно помнить, что человеческий организм поражает не напряжение, а величина тока. При неблагоприятных условиях даже низкие напряжения (30 – 40 В) могут быть опасными для жизни!

Для того чтобы происходило как можно меньше случаев поражения людей электрическим током в быту необходимо сделать так, чтобы правила электробезопасности были известны и понятны всем и каждому. Буду рад, если предложенная подборка статей поможет четко осознать всю серьезность и обязательную необходимость мер электробезопасности, а также узнать способы безопасного пользования электрической энергией в быту и понять чем вызваны те или иные требования по электробезопасности.

Базовая статья про основы электробезопасности. В ней приведены конкретные и простые правила, которые необходимо соблюдать при использовании электроэнергии в быту для того, что бы избежать поражения электрическим током.

Электричество приносит много пользы человеку. Но оно опасно, особенно для детей. В статье приведены основные меры предохранения детей от поражения электрическим током.

Иногда электричество из доброго помощника может превратится в злого врага, из созидательной энергии в разрушительную, а иногда даже смертельную. В статье описано чем опасно электричество, свойства различных источников тока и какие правила надо обязательно соблюдать при выполнении различных электротехнических работ.

Сопротивление тела человека — величина отнюдь не постоянная, ее значение зависит от многих факторов: от состояния человека на момент контакта (психического и физического), от параметров замкнутой цепи, от внешних условий среды, в которой человек на момент удара находится.

В тех случаях, когда человек оказался под воздействием электрического тока, необходимо предпринять экстренные действия. В этой статье рассказано какие это действия, и как их выполнять.

В статье рассмотрены основы электробезопасности и проблемы бытового электротравматизма, описываются предупредительные мероприятия благодаря которым бытовой травматизм может и должен быть полностью ликвидирован.

Оголенный оборванный провод, упавший на землю, – это очень опасно. Но что же это за явление, благодаря которому провод, «невинно» полеживающий в стороне становится смертельной угрозой?

Назначение и принцип действия защитного зануления. Защитное зануление играет огромную роль в обеспечении электробезопасности вашего дома, а качеству и правильности его выполнения следует уделять максимум внимания.

Правила подключения заземления, чем отличается “заземление” от “зануления”, что такое контур заземления и для чего он нужен, что требуется для разводки провода заземления по дому.

Ванная комната с точки зрения возможности поражения электрическим током является помещением повышенной опасности. Более высокая опасность предполагает большую ответственность и требует от нас принятия дополнительных мер безопасности при устройстве и монтаже электропроводки ванной комнаты.

Об основной и дополнительных системах уравнивания потенциалов и об их функциональном назначении.

Зачем нужны УЗО и дифавтомат? Какой общий принцип их работы? Чем они отличаются?

Почему нельзя использовать УЗО или дифавтоматы с электронным управлением, делать самодельные заземленияи подключать к ним клеммы заземления розеток и электроприборов. Почему нельзя соединять клеммы “земля” розеток и нейтральный провод электропроводки, самостоятельно делать повторное заземление нейтрального провода на вводе и соответственно зануление электроприборов. По всем спорным вопросам приводятся конкретные примеры.

Существует как много противников, так и сторонников установки УЗО в системе питания TN-C ( при отсутствии нулевого защитного провода в квартире) . Статья интересна наличием к ней 52-х (!) комментариев по заявленному вопросу. В результате бурных обсуждений большинство отметившихся в комментариях решили, что УЗО в целях электробезопасности даже в двухпроводке ставить нужно обязательно.

Система заземления электроустановок TN-C давно объявлена вне закона и запрещена к использованию. Но запретить легко, а что делать тем, чье жилище сдавалось в эксплуатацию задолго до введения новых норм и правил?

Почему обрыв общего нулевого провода в подъездном электрощите может стать причиной повышения напряжения сети? Чем это опасно? Как этого избежать?

Пайка является одной из самых популярных видов деятельности людей, профессионально связанных с электротехникой и электроникой. В этой статье приводятся правила электробезопасности при пайке и полезные советы, как не испортить свое здоровье вдыхая пары свинца и олова.

При проектировании, монтаже и эксплуатации электрической проводки необходимо не забывать о некоторых мерах, способных обеспечить пожарную безопасность и оградить людей от беды.

Основной причиной пожароопасных ситуаций является, конечно же, неисправная электропроводка. Что нужно делать и на что обращать внимание для того, чтобы электропроводка не стала источником пожара.

В статье описаны причины возникновения искр в розетке и способы устранения этого явления.

Неконтролируемое использование тройников и удлинителей может привести к пожару в квартире. О причинах и как этого избежать подробно рассказано в статье.

Самодельные нагревательные приборы, т.н. “козлы” и самодельные кипятильники являются довольно распространенными электроприборами у людей слабо представляющих себе их реальную опасность. Прочитав эту статью, вы не только сами откажетесь от использования таких устройств, но и будете убежденным противником их применения вашими друзьями и коллегами.

В чем опасность электрических обогревателей? Правила и рекомендации безопасного использования электрообогревателей различных видов и типов.

Для того чтобы происходило как можно меньше случаев поражения людей электрическим током в быту необходимо сделать так, чтобы правила электробезопасности были известны и понятны всем и каждому. Буду рад, если предложенная подборка статей поможет четко осознать всю серьезность и обязательную необходимость мер электробезопасности, а также узнать способы безопасного пользования электрической энергией в быту и понять чем вызваны те или иные требования по электробезопасности.

Опасности при работе с электричеством

При поражении током организм человека получает вред, часто несовместимый с жизнью. Каждый год из-за несоблюдения техники безопасности страдает 15-20% электриков. Удар током в 35 вольт способен привести к летальному исходу. Наиболее частой причиной несчастных случаев при работе с электричеством является взаимодействие с оголенными проводами, которые находятся под напряжением. Следствием воздействия тока на организм человека является неконтролируемое сокращение мышц, из-за которого человек не может оторваться от источника тока, что является главной сложностью и опасностью удара током. Нагрузку получают все внутренние системы жизнедеятельности человека. Если электрические импульсы дойдут до сердца, они могут вызвать его остановку.

  1. Запрещено руками проверять наличие тока. Не работайте и не касайтесь электроприборов влажными или мокрыми руками. Также не допускайте попадания воды на электрические приборы.
  2. Запрещается сгибать и скручивать электрические провода под напряжением.
  3. При замене ламп поверхность, на который вы стоите, должна быть сухой.
  4. При устранении неисправности электросети, следует полностью отключать ее.

Защитное зануление

Является важной мерой обеспечения безопасности. Оно проводится в обязательном порядке на территории санузлов и кухонь, хотя не возбраняется организовать такие меры по квартире. Смысл мероприятия: корпус прибора зачастую отличается по потенциалу от земного. Уравнивание точек исключает возможность поражения током.

Схема защиты человека

Не верящим в такие мероприятия полезно измерить напряжение относительно земли на корпус обычной стиральной машины с неподключенным заземлением. Понятно, что при монтаже розеток по европейским стандартам подобные меры обеспечиваются автоматически. Если все сделано правильно, включите вилку в розетку и прозвоните два любых корпуса. Зануление часто организуется на случай неподключенного прибора, когда заземление не работает, а потенциал может присутствовать, к примеру, от антенны общего пользования.

Не верящим в такие мероприятия полезно измерить напряжение относительно земли на корпус обычной стиральной машины с неподключенным заземлением. Понятно, что при монтаже розеток по европейским стандартам подобные меры обеспечиваются автоматически. Если все сделано правильно, включите вилку в розетку и прозвоните два любых корпуса. Зануление часто организуется на случай неподключенного прибора, когда заземление не работает, а потенциал может присутствовать, к примеру, от антенны общего пользования.

Большая Энциклопедия Нефти и Газа

В поле радиации происходит ионизация воздуха, уменьшение сопротивления изоляции, уменьшение электрической прочности изоляции . В электронных лампах гамма-радиация может вызвать увеличение уровня собственных шумов и выделение газа из стеклянного баллона. В полупроводниковых приборах: германиевых и кремниевых диодах и триодах, в фотосопротивлениях, терми-стерах-облучение быстрыми нейтронами вызывает смещение атомов в кристаллической решетке и отказ в работе при относительно низком уровне радиации. Электронные лампы более устойчивы к воздействию радиации, чем полупроводниковые приборы. [13]

Читайте также:  Чем отмыть кровь с дивана

Методы контроля

Контроль состояния и электрической прочности позволяет вовремя выявлять дефекты или старение диэлектрика в обмотках силовых трансформаторов, проходных и опорных изоляторах, высоковольтных вводах, силовых кабелях и других видах оборудования. Благодаря этому устройства можно заменить или отремонтировать, просушить изоляционную среду или установить новую обмотку. Современные испытательные установки для проверки электрической прочности могут применять различные методики.

Наиболее популярными являются:

  • Измерение сопротивления изоляции – производится при помощи мегаомметра напряжением в 500, 1000 или 2500В, в зависимости от номинала испытуемого агрегата. Длительность и нормы регламентируются Приложением 3 ПТЭЭП, на внутреннюю изоляцию подается напряжение и происходит измерение сопротивления.
  • Испытание повышенным напряжением – выполняется путем подачи на внешнюю изоляцию, устройство или его часть через испытательный трансформатор кенотронной установки повышенного напряжения. Данная процедура носит временный, а в некоторых случаях и импульсный характер, технология и нормы испытательных напряжений регламентируются ГОСТ 246060.1-81, а также более современным ГОСТ Р55195-2012 для различных видов оборудования, бумажной изоляции и прочих.
  • Измерение угла диэлектрических потерь – в идеальном диэлектрике этот параметр должен равняться 0, но чем меньше электрическая прочность, тем больше потери в изоляции. Возникает разница между активной и реактивной составляющей переменного тока, из-за чего и возрастает tg δ, что показано на рисунке ниже:

Далее вычислим напряженность электромагнитного поля по формуле:

Свойства и испытания электрической изоляции

Свойства и схема замещения электрической изоляции

Как известно, термином «изоляция» в практике принято обозначать два понятия:

1) способ предотвращения образования электрического контакта между частями электрического изделия,

2) материалы и изделия из них, применяемые для реализации данного способа.

Электроизоляционные материалы под воздействием приложенного к ним напряжения обнаруживают свойство проводить электрический ток. Хотя значение проводимости электроизоляционных материалов на несколько порядков ниже, чем у проводников, тем не менее она играет существенную роль и во многом определяет надежность работы электротехнического изделия.

Под действием приложенного к изоляции напряжения через нее протекает ток, называемый током утечки, изменяющийся во времени.

Для изучения и иллюстрации свойств электрической изоляции ее принято представлять в виде некоторой модели, называемой схемой замещения (рис. 1), содержащей четыре параллельно соединенные электрические цепи. Первая из них содержит только конденсатор С1, называемый геометрической емкостью.

Рис. 1. Схема замещения электрической изоляции

Наличие этой емкости обусловливает появление мгновенного броска тока, возникающего при приложении к изоляции постоянного напряжения, затухающего практически за несколько секунд, и емкостного тока, проходящего через изоляцию при приложении к ней переменного напряжения. Геометрической эту емкость называют потому, что она зависит от изоляции: ее размеров (толщины, протяженности и т. п.) и расположения между токоведущей частью А и корпусом (землей).

Вторая цепь характеризует внутреннее строение и свойства изоляции, в том числе ее структуру, количество групп из параллельно соединенных конденсаторов и резисторов. Ток I2, протекающий по этой цепи, называют абсорбционным. Начальное значение этого тока пропорционально площади изоляции и обратно пропорционально ее толщине.

Если токоведущие части электротехнического изделия изолированы двумя, слоями изоляции и более (например, изоляция провода и изоляция катушки), то в схеме замещения абсорбционная ветвь представляется в виде двух и более последовательно соединенных групп из конденсатора и резистора, характеризующих свойства одного из слоев изоляции. В данной схеме рассматривается двухслойная изоляция, один слой которой замещен группой элементов из конденсатора С2 и резистора R1, а второй — С3 и R2.

Третья цепь содержит один резистор R3 и характеризует потери в изоляции при приложении к ней постоянного напряжения. Сопротивление этого резистора, называемое также сопротивлением изоляции, зависит от многих факторов: размеров, материала, конструкции, температуры, состояния изоляции, в том числе от увлажненности и загрязненности ее поверхности, а также от приложенного напряжения.

При одних дефектах изоляции (например, сквозных повреждениях) зависимость сопротивления R3 от напряжения становится нелинейной, а при других, например при сильном увлажнении, оно практически не изменяется с ростом напряжения. Ток I3 протекающий через эту ветвь, принято называть сквозным током.

Четвертая цепь представлена на схеме замещения искровым промежутком МП, характеризующим электрическую прочность изоляции, численно выражаемую значением напряжения, при котором электроизоляционный материал теряет изоляционные свойства и разрушается под действием протекающего через него тока I4.

Данная схема замещения изоляции позволяет не только описывать процессы, происходящие в ней при приложении напряжения, но и устанавливать параметры, контролируя которые можно судить о ее состоянии.

Способы испытания электрической изоляции

Наиболее простым и распространенным способом оценки состояния изоляции и ее целости является измерение ее сопротивления с помощью мегаомметра.

Обратим внимание на то, что наличие в схеме замещения конденсаторов объясняет также способность изоляции накапливать электрические заряды. Поэтому обмотки электрических машин и трансформаторов до и после измерения сопротивления изоляции должны быть разряжены путем заземления вывода, к которому подключался мегаомметр.

При измерении сопротивления изоляции электрических машин и трансформаторов следует контролировать температуру обмоток, которая фиксируется в протоколе испытаний. Знание температуры, при которой производились измерения, необходимо для сравнения результатов измерений между собой, так как сопротивление изоляции резко изменяется в зависимости от температуры: в среднем сопротивление изоляции уменьшается в 1,5 раза при увеличении температуры на каждые 10°С и так же возрастает при соответствующем уменьшении температуры.

Из-за того что влага, всегда содержащаяся в изоляционных материалах, влияет на результаты измерения, определение любых параметров, характеризующих качество изоляции, при температуре ниже +10оС не производят, так как полученные результаты не дадут правильного представления об истинном состоянии изоляции.

При измерении сопротивления изоляции практически холодного изделия температура изоляции может быть принята равной температуре окружающей среды. Во всех других случаях температуру изоляции условно принимают равной температуре обмоток, измеренной по их активному сопротивлению.

Чтобы измеренное сопротивление изоляции заметно не отличалось от истинного значения, собственное сопротивление изоляции элементов измерительной схемы — проводов, изоляторов и других — должно вносить минимальную погрешность в результат измерения. Поэтому при измерении сопротивления изоляции электрических аппаратов напряжением до 1000 В сопротивление этих элементов должно быть не менее 100 МОм, а при измерении сопротивления изоляции силовых трансформаторов — не меньше предела измерения мегаомметра.

Если это условие не соблюдено, то в результаты измерения необходимо внести поправку на сопротивление изоляции элементов схемы. Для этого измерение сопротивления изоляции производят дважды: один раз при полностью собранной схеме и подключенном изделии, а второй— при отключенном изделии. Результат первого измерения даст эквивалентное сопротивление изоляции схемы и изделия Rэ, а результат второго измерения — сопротивление элементов измерительной схемы Rc. Тогда сопротивление изоляции изделия

Если для электрических машин некоторых других изделий не установлена последовательность измерения сопротивления изоляции, то для силовых трансформаторов эта очередность измерения регламентирована стандартом, согласно которому вначале измеряют сопротивление изоляции обмотки низшего напряжения (НН). Остальные обмотки, а также бак должны быть заземлены. При отсутствии бака заземлению подлежат кожух трансформатора или его остов.

При наличии трех обмоток напряжения — низшего НН, среднего СН и высшего ВН — после обмотки низшего напряжения необходимо измерить сопротивление изоляции обмотки среднего напряжения и только после этого высшего напряжения. Естественно, что при всех измерениях остальные обмотки, а также бак должны быть заземлены, а незаземленная обмотка после каждого измерения обязательно разряжена путем соединения с корпусом не менее чем на 2 мин. Если результаты измерений не соответствуют установленным требованиям, то испытания необходимо дополнить определением сопротивления изоляции обмоток, электрически соединенных между собой.

Для двухобмоточных трансформаторов следует измерить сопротивление обмоток высшего и низшего напряжений относительно корпуса, а для трехобмоточных — сперва обмоток высшего и среднего напряжений, а затем обмоток высшего, среднего и низшего напряжений.

При испытаниях изоляции трансформатора необходимо произвести несколько измерений, чтобы определить не только значения эквивалентного сопротивления изоляции, но и сопоставить между собой сопротивления изоляции обмоток относительно других обмоток и корпуса машины.

Сопротивление изоляции электрических машин обычно измеряют при соединенных между собой фазных обмотках, а на месте установки — вместе с кабелями (шинами). Если же результаты измерения не отвечают установленным требованиям, то тогда измеряют сопротивление изоляции каждой фазной обмотки, а при необходимости и каждой ветви обмотки.

Следует иметь в виду, что только по абсолютному значению сопротивления изоляции трудно обоснованно судить о состоянии изоляции. Поэтому для оценки состояния изоляции электрических машин в период эксплуатации сравнивают результаты данных измерений с результатами предыдущих.

Значительные, в несколько раз, расхождения между сопротивлениями изоляции отдельных фаз обычно свидетельствуют о каком-либо существенном ее дефекте. Одновременное снижение сопротивления изоляции у всех фазных обмоток, как правило, говорит об изменении общего состояния ее поверхности.

Сравнивая результаты измерений, следует помнить о зависимости сопротивления изоляции от температуры. Поэтому сравнивать между собой можно только результаты измерений, выполненные при одинаковой или близкой по значению температуре.

При постоянстве приложенного к изоляции напряжения суммарный ток Iи (см. рис. 1), протекающий через нее, уменьшается тем в большей степени, чем лучше состояние изоляции, а в соответствии с уменьшением тока Iи вырастают показания мегаомметра. В связи с тем что составляющая I2 этого тока, называемая также током абсорбции , в отличие от составляющей I3, не зависит от состояния поверхности изоляции, а также от ее загрязненности и увлажненности, отношение значений сопротивления изоляции в заданные моменты времени принято в качестве характеристики увлажненности изоляции.

Читайте также:  Установка душа в частном доме

В стандартах рекомендуется измерять сопротивление изоляции через 15 с (R15) и через 60 с (R60) после подключения мегаомметра, а отношение этих сопротивлений ka= R60/ R15 называют коэффициентом абсорбции .

При неувлажненной изоляции ka >2, а при влажной — ka ≈1.

Так как значение коэффициента абсорбции практически не зависит от размеров электрической машины и разных случайных факторов, то оно может быть нормировано: ka ≥ 1,3 при 20°С.

Погрешность измерения сопротивления изоляции не должна превышать ±20%, если она специально не установлена для конкретного изделия.

В электротехнических изделиях испытаниям на электрическую прочность подвергают изоляцию обмоток относительно корпуса и между собой, а также междувитковую изоляцию обмоток.

Для испытания электрической прочности изоляции обмоток или токоведущих частей относительно корпуса к выводам проверяемой обмотки или токоведущих частей прикладывают повышенное по сравнению с номинальным синусоидальное напряжение частотой 50 Гц. Напряжение и длительность его приложения указаны в технической документации на каждое конкретное изделие.

При испытании электрической прочности изоляции обмоток и токоведущих частей относительно корпуса все прочие обмотки и токоведущие части, не участвующие в испытаниях, должны быть электрически соединены с заземленным корпусом изделия. После окончания испытаний обмотки должны быть заземлены для снятия остаточного заряда.

На рис. 2 приведена схема испытания электрической прочности обмотки трехфазного электродвигателя. Повышенное напряжение создается иепытательной установкой AG, содержащей источник регулируемого напряжения Е. Напряжение измеряют на стороне высокого напряжения вольтметром PV. Амперметр РА служит для измерения тока утечки через изоляцию.

Изделие считается выдержавшим испытание, если не произошло пробоя изоляции или перекрытия по поверхности, а также если ток утечки не превысил значения, приведенного в документации на данное изделие. Отметим, что наличие амперметра, контролирующего ток утечки, позволяет использовать в испытательной установке трансформатор.

Рис. 2. Схема испытания электрической прочности изоляции электротехнических изделий

Помимо испытания напряжением промышленной частоты изоляцию испытывают и выпрямленным напряжением. Преимуществом такого испытания является возможность по результатам измерения токов утечки при разных значениях испытательного напряжения судить о состоянии изоляции.

Для оценки состояния изоляции используется коэффициент нелинейности

где I1,0 и I0,5 — токи утечки через 1 мин после приложения испытательных напряжений, равных нормированному значению Uнорм и половине номинального напряжения электрической машины Uном, kн

Рассмотренные три характеристики — сопротивление изоляции, коэффициент абсорбции и коэффициент нелинейности — используют для решения вопроса о возможности включения электрической машины без сушки изоляции.

При испытании электрической прочности изоляции по схеме рис. 2 все витки обмотки находятся практически под одним напряжением относительно корпуса (земли) и поэтому междувитковая изоляция остается неиспытанной.

Одним из способов испытания электрической прочности междувитковой изоляции служит повышение напряжения на 30% по сравнению с номинальным. Это напряжение подводится от источника регулируемого напряжения Ек к испытываемому изделию, работающему на холостом ходу.

Другой способ применим для генераторов, работающих на холостом ходу, и заключается в повышении тока возбуждения генератора до получения на выводах статора или якоря напряжения (1,3 ÷ 1,5) Uном в зависимости от типа машины. Учитывая, что даже в режиме холостого хода токи, потребляемые обмотками электрических машин, могут превышать свои номинальные значения, стандарты допускают проводить такое испытание при повышенной сверх номинального значения частоте подведенного к обмоткам двигателя напряжения или при повышенной частоте вращения генератора.

Для испытаний асинхронных двигателей возможно также использовать испытательное напряжение с частотой fи = 1,15 fном. В таких же пределах можно повысить частоту вращения генератора.

При испытании электрической прочности изоляции такими способами между соседними витками обмотки будет приложено напряжение, численно равное частному от деления подведенного напряжения на число витков обмотки. Оно незначительно (на 30—50%) отличается от того, которое существует при работе изделия с номинальным напряжением.

Как известно, предел повышения напряжения, прикладываемого к выводам обмотки, расположенной на сердечнике, обусловливается нелинейной зависимостью тока в этой обмотке от напряжения на ее выводах. При напряжениях, близких к номинальному значению Uном сердечник не насыщается, а ток линейно зависит от напряжения (рис. 3, участок OA).

При увеличении напряжения U сверх номинального ток в катушке резко возрастает и при U=2Uном ток может в десятки раз превышать номинальное значение. Чтобы существенно повысить напряжение, приходящееся на виток обмотки, испытание прочности междувитковой изоляции происходит при частоте, многократно (в десять раз и более) превышающей номинальную.

Рис. 3. График зависимости тока в катушке с сердечником от приложенного напряжения

Рис. 4. Схема испытания междувитковой изоляции обмоток на повышенной частоте тока

Рассмотрим принцип испытания междувитковой изоляции катушек контакторов (рис. 4). Проверяемая катушка L2 надевается на стержень разъемного магнитопровода. К выводам катушки L1 подводят такое напряжение U1 повышенной частоты, чтобы на каждый виток катушки L2 приходилось требуемое для испытания электрической прочности междувитковой изоляции напряжение. Если изоляция витков катушки L2 исправна, то ток, потребляемый катушкой L1 и измеряемый амперметром РА, после установки катушки будет таким же, как и до этого. В противном случае ток в катушке L1 возрастает.

Рис. 5. Схема измерения тангенса угла диэлектрических потерь

Последняя из рассматриваемых характеристик изоляции — тангенс угла диэлектрических потерь .

Известно, что изоляция обладает активным и реактивным сопротивлениями и при приложении к ней периодического напряжения через изоляцию протекают активный и реактивный токи, т. е. существуют активная Р и реактивная Q мощности. Отношение Р к Q называют тангенсом угла диэлектрических потерь и обозначают tgδ.

Если вспомнить, что P=IUcosφ, a Q = IUsinφ, то можно написать:

т. е. tgδ представляет собой отношение активного тока, протекающего через изоляцию, к реактивному току.

Чтобы определить tgδ необходимо одновременно измерить активную и реактивную мощности или активное и реактивное (емкостное) сопротивления изоляции. Принцип измерения tgδ вторым способом приведен на рис. 5, где измерительная схема представляет собой одинарный мост.

Плечи моста составлены образцовым конденсатором С0, конденсатором переменной емкости С1, переменным R1 и постоянным R2 резисторами, а также емкостью и сопротивлением изоляции обмотки L относительно корпуса изделия или земли, условно изображенных в виде конденсатора Сх и резистора Rx. В том случае когда необходимо измерить tgδ не обмотки, а конденсатора, его обкладки подключают непосредственно к выводам 1 и 2 мостовой схемы.

В диагонали моста включены гальванометр Р и источник питания, которым в нашем случае является трансформатор Т.

Как и в других мостовых схемах процесс измерения заключается в получении минимальных показаний прибора Р путем поочередного изменения сопротивления резистора R1 и емкости конденсатора С1. Обычно параметры моста выбирают таким образом, чтобы значение tgδ при нулевых или минимальных показаниях прибора Р отсчитывалось прямо по шкале конденсатора С1.

Определение tgδ обязательно для силовых конденсаторов и трансформаторов, высоковольтных изоляторов и других электрических изделий.

В связи с тем что испытания электрической прочности изоляции и измерение tgδ производят, как правило, при напряжениях свыше 1000 В, следует соблюдать все общие и специальные меры безопасности.

Порядок проведения испытаний электрической изоляции

Рассмотренные выше параметры и характеристики изоляции следует определять в последовательности, установленной стандартами на конкретные виды изделий.

Например, у силовых трансформаторов сначала определяют сопротивление изоляции, а затем измеряют тангенс угла диэлектрических потерь.

Для вращающихся электрических машин после измерения сопротивления изоляции до испытания ее электрической прочности необходимо выполнить следующие испытания: при повышенной частоте вращения, при кратковременной перегрузке по току или вращающему моменту, при внезапном коротком замыкании (если оно предусмотрено для данной синхронной машины), испытание изоляции обмоток выпрямленным напряжением (если это установлено в документации на данную машину).

Стандартами или техническими условиями на конкретные виды машин этот перечень может быть дополнен другими испытаниями, которые могут повлиять на электрическую прочность изоляции.

Другой способ применим для генераторов, работающих на холостом ходу, и заключается в повышении тока возбуждения генератора до получения на выводах статора или якоря напряжения (1,3 ÷ 1,5) Uном в зависимости от типа машины. Учитывая, что даже в режиме холостого хода токи, потребляемые обмотками электрических машин, могут превышать свои номинальные значения, стандарты допускают проводить такое испытание при повышенной сверх номинального значения частоте подведенного к обмоткам двигателя напряжения или при повышенной частоте вращения генератора.

1. МЕТОД 1

1.1. Принцип и условия контроля

1.1.1. Принцип контроля электрической прочности изоляции заключается в создании разности электрических потенциалов между любыми электрически не соединенными контактами, а также между металлическими деталями и любым контактом, которая превышает разность электрических потенциалов при рабочем напряжении.

1.1.2. Контроль электрической прочности изоляции проводят напряжением постоянного или переменного тока частотой 50 Гц.

1.1.3. Вид и значение испытательного напряжения устанавливают в стандартах или технических условиях на конкретные типы изделий.

1.2.1. Контроль электрической прочности изоляции проводят на установке, структурная схема которой приведена на чертеже.

– источник питания; – регулирующее устройство, осуществляющее установку испытательного
напряжения; – преобразователь (высоковольтный трансформатор); – устройство для подключения
испытуемого объекта; – блок индикации и регистрации; – блок управления.

Читайте также:  Что делать, если обнаружили что электрик подключил соседей к нашему счетчику?

1.2.2. Мощность и внутреннее сопротивление источника испытательного напряжения должны быть такими, чтобы при изменении тока нагрузки от 0 до момента отключения падение испытательного напряжения не превышало 10%.

1.2.3. Регулирующее устройство и блок управления (при его наличии) должны обеспечивать плавную или ступенчатую регулировку выходного напряжения или иметь возможность практически мгновенного установления испытательного напряжения.

1.2.4. Регулирующее устройство должно обеспечивать установление испытательного напряжения с относительной погрешностью в пределах ±5%.

1.2.5. Блок индикации и регистрации должен обеспечивать автоматическое отключение испытательного напряжения при токе 10-40 мА.

1.2.6. Коэффициент пульсаций источника постоянного напряжения испытательной установки не должен превышать 5%.

1.2.7. Коэффициент нелинейных искажений источника переменного напряжения не должен превышать 10%.

1.3. Подготовка и проведение контроля

1.3.1. Изделия следует подключать к испытательной установке в соответствии с требованиями стандарта и требованиями технических условий на изделия конкретных типов и эксплуатационной документацией на испытательные установки.

1.3.2. Проверку электрической прочности изоляции следует проводить одним из способов:

1.3.2.1. Способ А

На изделие подают испытательное напряжение поочередно между каждым выводом и всеми остальными выводами, соединенными с корпусом и (или) монтажной платой.

1.3.2.2 . Способ В

Четные и нечетные выводы изделия соединяют вместе, образуя две группы. Допускается соединять в одну группу соседние контакты.

Если выводы расположены в два или более рядов, необходимо образовать еще две группы выводов, чтобы измерить приложенное напряжение у каждой пары соседних выводов.

Испытательное напряжение подают на изделие поочередно:

между первой группой выводов и второй группой, соединенной с корпусом и (или) монтажной платой;

между второй группой выводов и первой группой, соединенной с корпусом и (или) монтажной платой.

1.3.2.3. Способ С

На изделие подают испытательное напряжение, указанное в п.1.1.3, между двумя соседними разомкнутыми выводами, расположенными на наименьшем расстоянии друг от друга, и между токоведущими цепями, соединенными между собой, и корпусом.

1.3.3. Испытательное напряжение следует подавать, начиная с нуля или со значения, не превышающего значение рабочего напряжения.

Скорость подачи испытательного напряжения не должна превышать 500 В/с.

1.3.4. Изделия выдерживают под испытательным напряжением в течение (60±5) с.

1.3.5. Регистрацию электрического пробоя или поверхностного перекрытия изоляции проводят путем фиксации тока отключения испытательной установки или по превышению максимально допустимого тока утечки (если ток утечки указан в ТУ на изделия конкретных типов).

Погрешность измерения тока утечки должна быть в пределах ±5%.

1.3.2-1.3.5 (Измененная редакция, Изм. N 1).

1.3.2.1. Способ А

На изделие подают испытательное напряжение поочередно между каждым выводом и всеми остальными выводами, соединенными с корпусом и (или) монтажной платой.

Физический смысл

Напряженность электрического поля возрастает с увеличением напряжения между проводниками, это могут быть пластины конденсатора или жилы кабеля (в индивидуальной обмотке), в определенный момент возникает пробой изоляции. Величина, характеризующая напряженность в момент пробоя называется электрическая прочность и определяется по формуле:

здесь: U – напряжение между проводниками, d – толщина диэлектрика.

Электрическая прочность измеряется в кВ/мм (кВ/см). Эта формула справедлива для плоских проводников (в виде лент или пластин) с равномерным слоем изоляции между ними, как, например, в бумажном конденсаторе.

здесь: U – напряжение между проводниками, d – толщина диэлектрика.

Ремонт электрооборудования на судах – Контроль качества электрической изоляции

Сопротивление изоляции, MOм

Неразрушающие методы контроля изоляции

Неразрушающие методы контроля изоляции и их общая характеристика

Для контроля состояния изоляции могут быть использованы многие методы физического и химического анализа, однако в заводских лабораториях и в энергосистемах применяются главным образом электрические методы неразрушающих испытаний, которые базируются на двух основных явлениях, возникающих в диэлектриках под действием слабых электрических полей: электропроводности и электрической поляризации.

Чем больше в изоляции загрязняющих примесей, тем выше ее электропроводность и тем ниже электрическая прочность. Поэтому проводимость или обратная ей величина – сопротивление утечки изоляции – могут служить косвенными показателями степени загрязненности и, следовательно, общего состояния изоляции.

Процесс поляризации в реальных диэлектриках сопровождается рассеянием энергии – диэлектрическими потерями, которые характеризуются величиной tgδ.

Таким образом, tgδ, как и сопротивление утечки, может служить косвенным показателем состояния изоляции.

В комбинированной изоляции, состоящей из нескольких диэлектриков с разными характеристиками, наблюдается специфическое явление накопления на границах диэлектриков зарядов, именуемых зарядами абсорбции. Это явление связано с различием свойств отдельных слоев и называется миграционной поляризацией.

Таким образом, заряд абсорбции и связанные с ним явления характеризуют неоднородность изоляции. Величины, связанные с явлением миграционной поляризации, могут служить показателями состояния изоляции и использоваться для целей контроля.

Контроль изоляции по tgδ

Контроль изоляции по tgδ является одним из наиболее распространенных. Как показывает опыт, по значению tgδ можно установить наличие в изоляции различных по характеру дефектов.

При испытаниях некоторых видов оборудования tgδ изоляции измеряют при нескольких напряжениях в интервале, примерно 0,5–1,5Uраб, и строят зависимость tgδ = f(U), по которой иногда можно судить не только о наличии, но и о характере дефектов в изоляции (рисунок 1).

У изоляции нормального качества значение tgδ при напряжениях до 1,5Uраб в большинстве случаев остается практически неизменным (кривая 1 на рисунке 1).

В случае изоляции с газовыми включениями после возникновения частичных разрядов (Uчр) tgδ с ростом напряжения увеличивается вследствие рассеяния в разрядах дополнительной энергии (кривая 2 на рисунке 1).

Рисунок 1 – Зависимости tgδ изоляции от напряжения

1 — изоляция нормального качества; 2 — изоляция с газовыми включениями

Методы контроля с использованием явления абсорбции

Контроль изоляции по «возвратному» напряжению. По форме и величине «возвратного» напряжения можно судить о состоянии изоляции. Например, неравномерное увлажнение многослойной изоляции обнаруживается по увеличению «возвратного» напряжения.

Контроль изоляции по «кривой саморазряда». В случае идеально однородной изоляции «кривая саморазряда» есть просто экспонента. Если ее построить в полулогарифмическом масштабе, то она будет иметь вид прямой. Для неоднородной изоляции «кривая саморазряда» в том же масштабе, как сумма экспонент, уже не будет прямой. Чем больше она отклоняется от прямой линии, тем сильнее неоднородность изоляции.

Контроль изоляции по току утечки. Измерения тока в цепи испытуемой изоляции при включении ее на постоянное напряжение позволяют выявлять как частичное, так и сквозное увлажнение изоляции.

Контроль изоляции по сопротивлению утечки. По сопротивлению (или току) утечки можно судить о наличии в изоляции не только распределенных, но и сосредоточенных дефектов.

Контроль изоляции по емкостным характеристикам. По емкостным характеристикам наиболее эффективно выявляется увлажнение маслонаполненной изоляции.

В случае изоляции с газовыми включениями после возникновения частичных разрядов (Uчр) tgδ с ростом напряжения увеличивается вследствие рассеяния в разрядах дополнительной энергии (кривая 2 на рисунке 1).

4. Напряжения, связанные с колебаниями температуры:

В сочетании с механическими напряжениями, вызванными последовательными запусками и остановками оборудования, также на свойства изоляционных материалов влияют напряжения, возникающие при расширении и сжатии. Работа при экстремальных температурах также приводит к старению материалов.

Перед подробным рассмотрением различных методов измерения было бы полезно снова взглянуть на факторы, которые влияют на измерение сопротивления изоляции.

Инструкции / Инструкции по эксплуатации оборудования подстанций

ЭТЛ-35-02 на базе автошасси ГАЗ-66 предназначены для проведения полного комплекса измерительных и испытательных работ на оборудовании подстанций 35/10 кВ мощностью до б300 кВА и электростанций, воздушных и кабельных линий до 35 кВ, а также для определения мест повреждения в кабельных линиях напряжением до 10 кВ.
Более современная из вышеперечисленных установок является лаборатория ЛВИ2Г, возможности и технические характеристики которой аналогичны передвижной лаборатории ЭТЛ-35-02.
В состав передвижных лабораторий входят прожигательные установки ПКЛС-10, ПГУ.

Методы тестирования, основанные на влиянии времени приложения испытательного напряжения (PI и DAR)

Эти методы включают последовательное измерение значений сопротивления изоляции в указанное время. Их преимуществом является неподверженность особому влиянию температуры, поэтому их можно применять без коррекции результатов, если только испытательное оборудование не подвергается во время теста значительным колебаниям температуры.

Данные методы идеально подходят для профилактического обслуживания вращающихся машин и для мониторинга изоляции.

Если изоляционный материал находится в хорошем состоянии, ток утечки или ток проводимости будет низким, а на начальное измерение сильно влияют токи зарядки емкости и диэлектрического поглощения. При приложении испытательного напряжения со временем измеренное значение сопротивления изоляции повышается, так как уменьшаются эти токи помех. Необходимое для измерения изоляции в хорошем состоянии время стабилизации зависит от типа изоляционного материала.

Если изоляционный материал находится в плохом состоянии (поврежден, грязный и влажный), ток утечки будет постоянным и очень высоким, часто превышающим токи зарядки емкости и диэлектрического поглощения. В таких случаях измерение сопротивления изоляции очень быстро становится постоянным и стабилизируется на высоком значении напряжения.

Изучение изменения значения сопротивления изоляции в зависимости от времени приложения испытательного напряжения дает возможность оценить качество изоляции. Этот метод позволяет сделать выводы, даже если не ведется журнал измерения изоляции. Тем не менее, рекомендуется записывать результаты периодических измерений, проводимых в контексте программы профилактического обслуживания.

Состояние изоляции

Электрическая прочность изоляции: причины уменьшения и методы контроля

Определения и исследование электрической прочности композиционных(слоистых) диэлектриков при разной форме электродов на переменном токе промышленной частоты.

Тепловой пробой – разрушение диэлектрика за счет прогрессирующего локального энерговыделения при протекании тока в среде.

Добавить комментарий